結果
問題 | No.1112 冥界の音楽 |
ユーザー |
|
提出日時 | 2020-07-10 22:03:15 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 13 ms / 2,000 ms |
コード長 | 6,535 bytes |
コンパイル時間 | 2,031 ms |
コンパイル使用メモリ | 196,560 KB |
最終ジャッジ日時 | 2025-01-11 18:31:45 |
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 34 |
ソースコード
#line 1 "main.cpp"#include <bits/stdc++.h>#line 2 "/home/user/Library/utils/macros.hpp"#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))#define ALL(x) std::begin(x), std::end(x)#line 4 "/home/user/Library/modulus/modpow.hpp"inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);uint_fast64_t y = 1;for (; k; k >>= 1) {if (k & 1) (y *= x) %= MOD;(x *= x) %= MOD;}assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);return y;}#line 5 "/home/user/Library/modulus/modinv.hpp"inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {assert (0 <= value and value < MOD);if (value == 0) return -1;int64_t a = value, b = MOD;int64_t x = 0, y = 1;for (int64_t u = 1, v = 0; a; ) {int64_t q = b / a;x -= q * u; std::swap(x, u);y -= q * v; std::swap(y, v);b -= q * a; std::swap(b, a);}if (not (value * x + MOD * y == b and b == 1)) return -1;if (x < 0) x += MOD;assert (0 <= x and x < MOD);return x;}inline int32_t modinv(int32_t x, int32_t MOD) {int32_t y = modinv_nocheck(x, MOD);assert (y != -1);return y;}#line 4 "/home/user/Library/modulus/mint_core.hpp"/*** @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$*/template <int32_t MOD>struct mint {int32_t value;mint() : value() {}mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}mint(int32_t value_, std::nullptr_t) : value(value_) {}explicit operator bool() const { return value; }inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }inline bool operator == (mint<MOD> other) const { return value == other.value; }inline bool operator != (mint<MOD> other) const { return value != other.value; }inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }};template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }#line 5 "/home/user/Library/number/matrix_template.hpp"template <typename T, size_t H, size_t W>using matrix = std::array<std::array<T, W>, H>;template <typename T, size_t A, size_t B, size_t C>matrix<T, A, C> operator * (matrix<T, A, B> const & a, matrix<T, B, C> const & b) {matrix<T, A, C> c = {};REP (y, A) REP (z, B) REP (x, C) c[y][x] += a[y][z] * b[z][x];return c;}template <typename T, size_t H, size_t W>std::array<T, H> operator * (matrix<T, H, W> const & a, std::array<T, W> const & b) {std::array<T, H> c = {};REP (y, H) REP (z, W) c[y] += a[y][z] * b[z];return c;}template <typename T, size_t H, size_t W>matrix<T, H, W> operator + (matrix<T, H, W> const & a, matrix<T, H, W> const & b) {matrix<T, H, W> c;REP (y, H) REP (x, W) c[y][x] = a[y][x] + b[y][x];return c;}template <typename T, size_t N>std::array<T, N> operator + (std::array<T, N> const & a, std::array<T, N> const & b) {std::array<T, N> c;REP (i, N) c[i] = a[i] + b[i];return c;}template <typename T, size_t H, size_t W>matrix<T, H, W> zero_matrix() {return {};}template <typename T, size_t N>matrix<T, N, N> unit_matrix() {matrix<T, N, N> a = {};REP (i, N) a[i][i] = 1;return a;}template <typename T, size_t N>matrix<T, N, N> powmat(matrix<T, N, N> x, int64_t k) {matrix<T, N, N> y = unit_matrix<T, N>();for (; k; k >>= 1) {if (k & 1) y = y * x;x = x * x;}return y;}#line 5 "main.cpp"using namespace std;constexpr int MOD = 1000000007;mint<MOD> solve(int k, int m, int64_t n, const vector<int> & p, const vector<int> & q, const vector<int> & r) {constexpr int K = 6;assert (k <= K);auto pack = [&](int a, int b) {return a * K + b;};matrix<mint<MOD>, K * K, K * K> f = {};REP (i, m) {f[pack(q[i], r[i])][pack(p[i], q[i])] += 1;}array<mint<MOD>, K * K> x = {};REP (b, K) {x[pack(0, b)] += 1;}array<mint<MOD>, K * K> y = powmat(f, n - 2) * x;mint<MOD> ans = 0;REP (a, K) {ans += y[pack(a, 0)];}return ans;}// generated by online-judge-template-generator v4.4.0 (https://github.com/kmyk/online-judge-template-generator)int main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);constexpr char endl = '\n';int K;int M;int64_t N;cin >> K >> M;vector<int> P(M), Q(M), R(M);cin >> N;REP (i, M) {cin >> P[i] >> Q[i] >> R[i];-- P[i];-- Q[i];-- R[i];}auto ans = solve(K, M, N, P, Q, R);cout << ans << endl;return 0;}