結果

問題 No.1112 冥界の音楽
ユーザー masayoshi361masayoshi361
提出日時 2020-07-10 22:15:58
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 9,372 bytes
コンパイル時間 2,255 ms
コンパイル使用メモリ 190,432 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-10-11 09:33:49
合計ジャッジ時間 5,802 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 RE -
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 RE -
testcase_07 AC 2 ms
6,816 KB
testcase_08 RE -
testcase_09 RE -
testcase_10 AC 2 ms
6,820 KB
testcase_11 RE -
testcase_12 AC 2 ms
6,816 KB
testcase_13 RE -
testcase_14 AC 5 ms
6,816 KB
testcase_15 AC 2 ms
6,816 KB
testcase_16 AC 3 ms
6,816 KB
testcase_17 AC 2 ms
6,816 KB
testcase_18 AC 3 ms
6,820 KB
testcase_19 AC 2 ms
6,816 KB
testcase_20 AC 3 ms
6,816 KB
testcase_21 AC 6 ms
6,816 KB
testcase_22 AC 6 ms
6,820 KB
testcase_23 AC 3 ms
6,816 KB
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
testcase_30 RE -
testcase_31 RE -
testcase_32 RE -
testcase_33 RE -
testcase_34 RE -
testcase_35 RE -
testcase_36 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

/* #region header */
#ifdef LOCAL
    #include "/Users/takakurashokichi/Desktop/atcoder/cxx-prettyprint-master/prettyprint.hpp"
    #define debug(x) cout << x << endl
#else
    #define debug(...) 42
#endif

#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
//types
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
typedef pair < ll , ll > Pl;        
typedef pair < int, int > Pi;
typedef vector<ll> vl;
typedef vector<int> vi;
typedef vector<char> vc;
template< typename T >
using mat = vector< vector< T > >;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef vector<vector<char>> vvc;

template< int mod >
struct modint {
    int x;

    modint() : x(0) {}

    modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    modint &operator+=(const modint &p) {
        if((x += p.x) >= mod) x -= mod;
        return *this;
    }

    modint &operator-=(const modint &p) {
        if((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    modint &operator*=(const modint &p) {
        x = (int) (1LL * x * p.x % mod);
        return *this;
    }

    modint &operator/=(const modint &p) {
        *this *= p.inverse();
        return *this;
    }

    modint operator-() const { return modint(-x); }

    modint operator+(const modint &p) const { return modint(*this) += p; }

    modint operator-(const modint &p) const { return modint(*this) -= p; }

    modint operator*(const modint &p) const { return modint(*this) *= p; }

    modint operator/(const modint &p) const { return modint(*this) /= p; }

    bool operator==(const modint &p) const { return x == p.x; }

    bool operator!=(const modint &p) const { return x != p.x; }

    modint inverse() const {
        int a = x, b = mod, u = 1, v = 0, t;
        while(b > 0) {
        t = a / b;
        swap(a -= t * b, b);
        swap(u -= t * v, v);
        }
        return modint(u);
    }

    modint pow(int64_t n) const {
        modint ret(1), mul(x);
        while(n > 0) {
        if(n & 1) ret *= mul;
        mul *= mul;
        n >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const modint &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, modint &a) {
        int64_t t;
        is >> t;
        a = modint< mod >(t);
        return (is);
    }

    static int get_mod() { return mod; }
};
//abreviations
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define rep_(i, a_, b_, a, b, ...) for (int i = (a), max_i = (b); i < max_i; i++)
#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define rrep_(i, a_, b_, a, b, ...) for (int i = (b-1), min_i = (a); i >= min_i; i--)
#define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define SZ(x) ((int)(x).size())
#define pb(x) push_back(x)
#define eb(x) emplace_back(x)
#define mp make_pair
#define print(x) cout << x << endl
#define vprint(x) rep(i, x.size())cout << x[i] << ' '; cout << endl
#define vsum(x) accumulate(all(x), 0LL)
#define vmax(a) *max_element(all(a))
#define vmin(a) *min_element(all(a))
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
//functions
//gcd(0, x) fails.
ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
ll lcm(ll a, ll b) { return a/gcd(a, b)*b;}
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
template< typename T >
T mypow(T x, ll n) {
    T ret = 1;
    while(n > 0) {
        if(n & 1) (ret *= x);
        (x *= x);
        n >>= 1;
    }
    return ret;
}
ll modpow(ll x, ll n, const ll mod) {
    ll ret = 1;
    while(n > 0) {
        if(n & 1) (ret *= x);
        (x *= x);
        n >>= 1;
        x%=mod;
        ret%=mod;
    }
    return ret;
}
template< typename T >
uint64_t my_rand(void) {
    static uint64_t x = 88172645463325252ULL;
    x = x ^ (x << 13); x = x ^ (x >> 7);
    return x = x ^ (x << 17);
}
int popcnt(ull x) { return __builtin_popcountll(x); } 
//graph template
template< typename T >
struct edge {
    int src, to;
    T cost;

    edge(int to, T cost) : src(-1), to(to), cost(cost) {}

    edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}

    edge &operator=(const int &x) {
        to = x;
        return *this;
    }

    bool operator<(const edge<T> &r) const { return cost < r.cost; }
    
    operator int() const { return to; }
};
template< typename T >
using Edges = vector< edge< T > >;
template< typename T >
using WeightedGraph = vector< Edges< T > >;
using UnWeightedGraph = vector< vector< int > >;
struct Timer { 
    clock_t start_time; 
    void start() {
        start_time = clock(); 
    }
    int lap() { 
        //return x ms.
        return (clock()-start_time)*1000 / CLOCKS_PER_SEC; 
    }
};
/* #endregion*/
//constant
#define inf 1000000005
#define INF 4000000004000000000LL
#define mod 1000000007LL
#define endl '\n'
typedef modint<mod> mint;
const long double eps = 0.000001;
const long double PI  = 3.141592653589793;
//library
template< class T >
struct Matrix {
    vector< vector< T > > A;

    Matrix() {}

    Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}

    Matrix(size_t n) : A(n, vector< T >(n, 0)) {};

    size_t height() const {
        return (A.size());
    }

    size_t width() const {
        return (A[0].size());
    }

    inline const vector< T > &operator[](int k) const {
        return (A.at(k));
    }

    inline vector< T > &operator[](int k) {
        return (A.at(k));
    }

    static Matrix I(size_t n) {
        Matrix mat(n);
        for(int i = 0; i < n; i++) mat[i][i] = 1;
        return (mat);
    }

    Matrix &operator+=(const Matrix &B) {
        size_t n = height(), m = width();
        assert(n == B.height() && m == B.width());
        for(int i = 0; i < n; i++)
            for(int j = 0; j < m; j++)
                (*this)[i][j] += B[i][j];
        return (*this);
    }

    Matrix &operator-=(const Matrix &B) {
        size_t n = height(), m = width();
        assert(n == B.height() && m == B.width());
        for(int i = 0; i < n; i++)
            for(int j = 0; j < m; j++)
                (*this)[i][j] -= B[i][j];
        return (*this);
    }

    Matrix &operator*=(const Matrix &B) {
        size_t n = height(), m = B.width(), p = width();
        assert(p == B.height());
        vector< vector< T > > C(n, vector< T >(m, 0));
        for(int i = 0; i < n; i++)
            for(int j = 0; j < m; j++)
                for(int k = 0; k < p; k++)
                    C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
        A.swap(C);
        return (*this);
    }

    Matrix &operator^=(long long k) {
        Matrix B = Matrix::I(height());
        while(k > 0) {
            if(k & 1) B *= *this;
            *this *= *this;
            k >>= 1LL;
        }
        A.swap(B.A);
        return (*this);
    }

    Matrix operator+(const Matrix &B) const {
        return (Matrix(*this) += B);
    }

    Matrix operator-(const Matrix &B) const {
        return (Matrix(*this) -= B);
    }

    Matrix operator*(const Matrix &B) const {
        return (Matrix(*this) *= B);
    }

    Matrix operator^(const long long k) const {
        return (Matrix(*this) ^= k);
    }

    Matrix pow(long long n){
        Matrix ret = I(height());
        Matrix x = Matrix(*this);
        while(n > 0) {
            if(n & 1) (ret *= x);
            (x *= x);
            n >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, Matrix &p) {
        size_t n = p.height(), m = p.width();
        for(int i = 0; i < n; i++) {
            os << "[";
            for(int j = 0; j < m; j++) {
                os << p[i][j] << (j + 1 == m ? "]\n" : ",");
            }
        }
        return (os);
    }


    T determinant() {
        Matrix B(*this);
        assert(width() == height());
        T ret = 1;
        for(int i = 0; i < width(); i++) {
            int idx = -1;
            for(int j = i; j < width(); j++) {
                if(B[j][i] != 0) idx = j;
            }
            if(idx == -1) return (0);
            if(i != idx) {
                ret *= -1;
                swap(B[i], B[idx]);
            }
            ret *= B[i][i];
            T vv = B[i][i];
            for(int j = 0; j < width(); j++) {
                B[i][j] /= vv;
            }
            for(int j = i + 1; j < width(); j++) {
                T a = B[j][i];
                for(int k = 0; k < width(); k++) {
                    B[j][k] -= B[i][k] * a;
                }
            }
        }
        return (ret);
    }
};
int main(){
    cin.tie(0);
    ios::sync_with_stdio(0);
    cout << setprecision(20);
    ll n, m, k; cin>>k>>m>>n;
    Matrix<mint> M(k*k);
    vl p(m), q(n), r(n);
    rep(i, m){
        cin>>p[i]>>q[i]>>r[i];
        p[i]--;q[i]--;r[i]--;
    }
    int cnt = 0;
    rep(i, m){
        M[q[i]*k+r[i]][p[i]*k+q[i]]+=1;
    }
    //debug(M.A);
    Matrix<mint> V(k*k, 1);
    rep(i, m){
        if(p[i]==0){
            V[q[i]*k+r[i]][0]+=1;
        }
    }
    V = M.pow(n-3)*V;
    mint ans = 0;
    rep(i, k){
        ans+=V[i*k][0];
    }
    print(ans);
}
0