結果
問題 | No.17 2つの地点に泊まりたい |
ユーザー | ysuzuki5321 |
提出日時 | 2020-07-16 15:37:02 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 64 ms / 5,000 ms |
コード長 | 23,038 bytes |
コンパイル時間 | 1,724 ms |
コンパイル使用メモリ | 140,068 KB |
実行使用メモリ | 50,888 KB |
最終ジャッジ日時 | 2024-11-24 21:14:05 |
合計ジャッジ時間 | 4,404 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 55 ms
50,632 KB |
testcase_01 | AC | 57 ms
50,320 KB |
testcase_02 | AC | 60 ms
50,364 KB |
testcase_03 | AC | 57 ms
50,516 KB |
testcase_04 | AC | 52 ms
50,888 KB |
testcase_05 | AC | 56 ms
50,312 KB |
testcase_06 | AC | 56 ms
50,488 KB |
testcase_07 | AC | 61 ms
50,508 KB |
testcase_08 | AC | 53 ms
50,312 KB |
testcase_09 | AC | 57 ms
50,264 KB |
testcase_10 | AC | 64 ms
50,420 KB |
testcase_11 | AC | 63 ms
50,380 KB |
testcase_12 | AC | 63 ms
50,416 KB |
testcase_13 | AC | 54 ms
50,508 KB |
testcase_14 | AC | 63 ms
50,304 KB |
testcase_15 | AC | 58 ms
50,380 KB |
testcase_16 | AC | 57 ms
50,440 KB |
testcase_17 | AC | 53 ms
50,412 KB |
testcase_18 | AC | 52 ms
50,372 KB |
testcase_19 | AC | 57 ms
50,336 KB |
testcase_20 | AC | 55 ms
50,408 KB |
testcase_21 | AC | 47 ms
50,388 KB |
testcase_22 | AC | 58 ms
50,420 KB |
testcase_23 | AC | 53 ms
50,432 KB |
testcase_24 | AC | 52 ms
50,376 KB |
testcase_25 | AC | 50 ms
50,552 KB |
testcase_26 | AC | 58 ms
50,292 KB |
ソースコード
#include <stdio.h> #include <sstream> #include <string.h> #include <vector> #include <map> #include <algorithm> #include <utility> #include <set> #include <cctype> #include <queue> #include <stack> #include <cstdio> #include <cstdlib> #include <cmath> #include <deque> #include <limits> #include <iomanip> #include <ctype.h> #include <unordered_map> #include <random> #include <numeric> #include <iostream> #include <array> #define _USE_MATH_DEFINES #include <iostream> #include <math.h> using namespace std; typedef long long ll; typedef pair<int, int> pii; typedef pair<ll, ll> pll; typedef pair<ll, double> pld; typedef pair<double, double> pdd; typedef pair<double, ll> pdl; typedef pair<int, char> pic; typedef vector<ll> vl; typedef vector<int> vi; typedef priority_queue<ll, vector<ll>, greater<ll>> llgreaterq; typedef priority_queue<pll, vector<pll>, greater<pll>> pllgreaterq; typedef priority_queue<pair<ll, pll>, vector<pair<ll, pll>>, greater<pair<ll, pll>>> plpllgreaterq; typedef priority_queue<vi, vector<vi>, greater<vi>> vigreaterq; typedef priority_queue<vl, vector<vl>, greater<vl >> vlgreaterq; template <class o, class p, class q> using tuple3q = priority_queue<tuple<o, p, q>, vector<tuple<o, p, q>>, greater<tuple<o, p, q>>>; template <class o, class p, class q, class r> using tuple4q = priority_queue<tuple<o, p, q, r>, vector<tuple<o, p, q, r>>, greater<tuple<o, p, q, r>>>; template <class o, class p, class q, class r,class s> using tuple5q = priority_queue<tuple<o, p, q, r,s>, vector<tuple<o, p, q, r,s>>, greater<tuple<o, p, q, r,s>>>; int dx[] = { -1,0,1,0 }; int dy[] = { 0,-1,0,1 }; #define bit(x,v) ((ll)x << v) #define rep(x,n) for(ll x = 0;x < n;x++) #define rep2(x,f,v) for(ll x=f;x<v;x++) #define repe(v,x) for(auto v : x) // 許容する誤差ε #define EPS (1e-10) // 2つのスカラーが等しいかどうか #define EQ(a,b) (std::abs(a-b) < EPS) // 2つのベクトルが等しいかどうか #define EQV(a,b) ( EQ((a).real(), (b).real()) && EQ((a).imag(), (b).imag()) ) #define all(a) a.begin(),a.end() #define all0(a) memset(a,0,sizeof(a)) #define allm1(a) memset(a,-1,sizeof(a)) #define put_float(v) cout << fixed << setprecision(10); \ cout << v << endl #define put(v) cout << v << endl #define vinsert(v,p,x) v.insert(v.begin() + p,x) #define vsort(v) sort(all(v)); #define vdesc(v) vsort(v); \ reverse(all(v)) #define dup(v) v.erase(unique(all(v)),v.end()) #define ion(i,j) ((i & (1LL << j)) > 0) #define next(i) i++;i%=2 #define Len size() #define ull unsignd long long #define psp(a,b) push_back(make_pair(a,b)) #define psp2(a,b) push(make_pair(a,b)) #define cini(a) a; cin >> a #define infa(a,b) (a + b) % INF #define infm(a,b) (a * b) % INF #define infd(a,b) (a * modinv(b)) % INF #define infs(a,b) (a + INF - b) % INF #define inf(a) (a) %= INF #define inff(a) ((a) % INF) #define No cout << "No" << endl #define Yes cout << "Yes" << endl #define NO cout << "NO" << endl #define YES cout << "YES" << endl #define smal -INF*INF #define big INF*INF const ll INF = 1000000007; const int MAX = 2000010; const int MOD = 1000000007; long long fac[MAX], finv[MAX], inv[MAX]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++) { fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // 二項係数計算 long long COM(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } ll getpow(ll b, ll x, ll md) { ll t = b; ll res = 1; while (x > 0) { if (x & 1) { res *= t; res %= md; } x >>= 1; t *= t; t %= md; } return res; } ll getpow(ll b, ll x) { return getpow(b, x, INF); } ll modinv(ll x) { return getpow(x, INF - 2); } ll gcd(ll a, ll b) { if (b == 0) return a; return gcd(b, a % b); } class mint { int md = 1000000007; public: long long x; mint(ll x, ll md) { this->md = md; this->x = (x % md + md) % md; } mint(long long x = 0) : x((x% md + md) % md) {} mint operator-() const { return mint(-x); } mint& operator+=(const mint& a) { if ((x += a.x) >= md) x -= md; return *this; } mint& operator-=(const mint& a) { if ((x += md - a.x) >= md) x -= md; return *this; } mint& operator*=(const mint& a) { (x *= a.x) %= md; return *this; } mint operator+(const mint& a) const { mint res(*this); return res += a; } mint operator-(const mint& a) const { mint res(*this); return res -= a; } mint operator*(const mint& a) const { mint res(*this); return res *= a; } mint pow(ll t) const { if (!t) return 1; mint a = pow(t >> 1); a *= a; if (t & 1) a *= *this; return a; } // for prime mod mint inv() const { return pow(md - 2); } mint& operator/=(const mint& a) { return (*this) *= a.inv(); } mint operator/(const mint& a) const { mint res(*this); return res /= a; } friend ostream& operator<<(ostream& os, const mint& m) { os << m.x; return os; } }; int pr[100010]; int lank[100010]; void uini(int n) { for (size_t i = 0; i <= n; i++) { pr[i] = i; lank[i] = 1; } } int parent(int x) { if (x == pr[x]) return x; return pr[x] = parent(pr[x]); } int same(int x, int y) { return parent(x) == parent(y); } bool unit(int x, int y) { int px = parent(x); int py = parent(y); if (px == py) return false; if (lank[py] < lank[px]) { pr[py] = px; lank[px] += lank[py]; } else { pr[px] = py; lank[py] += lank[px]; } return true; } ll n,m; int ci = 0; struct Node { int key; int priority; Node* parent, * left, * right; Node(int key, int priority); Node() {} }; Node NIL; Node::Node(int key, int priority) : key(key), priority(priority) { left = &NIL; right = &NIL; } Node* root = new Node(); void cenrec(Node* k) { if (k->key == NIL.key) return; cenrec(k->left); cout << " " << k->key; cenrec(k->right); } void fastrec(Node* k) { if (k->key == NIL.key) return; cout << " " << k->key; fastrec(k->left); fastrec(k->right); } void insert(Node* v) { Node* y = &NIL; Node* x = root; while (x->key != NIL.key) { y = x; if (v->key < x->key) { x = x->left; } else { x = x->right; } } v->parent = y; if (y->key == NIL.key) { root = v; } else if (v->key < y->key) { y->left = v; } else { y->right = v; } } Node* find(Node* k, ll v) { if (k->key == NIL.key) return &NIL; if (k->key == v) return k; if (v < k->key) return find(k->left, v); return find(k->right, v); } void delp12(Node* x) { if (x->key == NIL.key) return; Node* l = x->left; Node* r = x->right; Node* pr = x->parent; if (l->key == NIL.key && r->key == NIL.key) { if (pr->left == x) { pr->left = &NIL; } else pr->right = &NIL; } else if (l->key != NIL.key) { if (pr->left == x) { pr->left = l; } else pr->right = l; l->parent = pr; } else if (r->key != NIL.key) { if (pr->left == x) { pr->left = r; } else pr->right = r; r->parent = pr; } } Node* get_next(Node* k) { if (k->key == NIL.key) return &NIL; Node* res = get_next(k->left); if (res->key != NIL.key) return res; return k; } void del(Node* x) { if (x->key == NIL.key) return; Node* l = x->left; Node* r = x->right; Node* pr = x->parent; if (l->key != NIL.key && r->key != NIL.key) { Node* nex = get_next(r); x->key = nex->key; delp12(nex); } else { delp12(x); } } Node* rightRotate(Node* t) { Node* s = t->left; t->left = s->right; s->right = t; return s; } Node* leftRotate(Node* t) { Node* s = t->right; t->right = s->left; s->left = t; return s; } Node* _insert(Node* t, int key, int priority) { if (t->key == NIL.key) { return new Node(key, priority); } if (key == t->key) { return t; } if (key < t->key) { t->left = _insert(t->left, key, priority); if (t->priority < t->left->priority) { t = rightRotate(t); } } else { t->right = _insert(t->right, key, priority); if (t->priority < t->right->priority) { t = leftRotate(t); } } return t; } Node* delete1(Node* t, int key); Node* _delete(Node* t, int key) { if (t->left->key == NIL.key && t->right->key == NIL.key) { return &NIL; } else if (t->left->key == NIL.key) { t = leftRotate(t); } else if (t->right->key == NIL.key) { t = rightRotate(t); } else { if (t->left->priority > t->right->priority) { t = rightRotate(t); } else t = leftRotate(t); } return delete1(t, key); } Node* delete1(Node* t, int key) { if (t->key == NIL.key) { return &NIL; } if (key < t->key) { t->left = delete1(t->left, key); } else if (key > t->key) { t->right = delete1(t->right, key); } else return _delete(t, key); return t; } int H; int left(int i) { return i * 2 + 1; } int right(int i) { return i * 2 + 2; } class edge { public: int from, to, i; ll val; edge() {} edge(ll to) : to(to) {} edge(ll to, ll i) : to(to), i(i) {} edge(ll from, ll to, ll val) : from(from), to(to), val(val) {} }; class LCA { private: vector<vector<edge>> v; vector<vector<int>> parent; vector<int> depth; void dfs(int n, int m, int d) { parent[0][n] = m; depth[n] = d; for (auto x : v[n]) { if (x.to != m) dfs(x.to, n, d + 1); } } public: LCA(ll N, ll root, vector<vector<edge>>& tree) { v = tree; parent = vector<vector<int>>(21, vector<int>(N + 1, 0)); depth = vector<int>(N + 1, 0); dfs(root, -1, 0); for (int j = 0; j + 1 < 20; j++) { for (int i = 1; i <= N; i++) { if (parent[j][i] < 0) parent[j + 1][i] = -1; else parent[j + 1][i] = parent[j][parent[j][i]]; } } } int lca(int n, int m) { if (depth[n] > depth[m]) swap(n, m); for (int j = 0; j < 20; j++) { if ((depth[m] - depth[n]) >> j & 1) m = parent[j][m]; } if (n == m) return n; for (int j = 19; j >= 0; j--) { if (parent[j][n] != parent[j][m]) { n = parent[j][n]; m = parent[j][m]; } } return parent[0][n]; } int dep(int n) { return depth[n]; } }; ll k; int _rank[1010]; int temp[1010]; bool compare_sa(int i, int j) { if (_rank[i] != _rank[j]) return _rank[i] < _rank[j]; else { int ri = i + k <= n ? _rank[i + k] : -1; int rj = j + k <= n ? _rank[j + k] : -1; return ri < rj; } } void construct_sa(string S, int* sa) { n = S.length(); for (size_t i = 0; i <= n; i++) { sa[i] = i; _rank[i] = i < n ? S[i] : -1; } for (k = 1; k <= n; k *= 2) { sort(sa, sa + n + 1, compare_sa); // saはソート後の接尾辞の並びになっている、rankは元の位置のindexを保持したまま、更新されている。 // ピンとこなかった部分 temp[sa[0]] = 0; for (size_t i = 1; i <= n; i++) { temp[sa[i]] = temp[sa[i - 1]] + (compare_sa(sa[i - 1], sa[i]) ? 1 : 0); } for (size_t i = 0; i <= n; i++) { _rank[i] = temp[i]; } } } bool contain(string S, int* sa, string T) { int a = 0, b = S.length(); // sa は 接尾辞が辞書順に並んでいる、入っているのはその位置のインデックス while (b - a > 1) { int c = (a + b) / 2; if (S.compare(sa[c], T.length(), T) < 0) a = c; else b = c; } return S.compare(sa[b], T.length(), T) == 0; } #define bit(x,v) ((ll)x << v) class BIT { static const int MAX_N = 500010; public: BIT() { memset(bit, 0, sizeof(bit)); } ll bit[MAX_N + 1], n; ll sum(int i) { ll s = 0; while (i > 0) { s += bit[i]; i -= i & -i; } return s; } void add(int i, int x) { while (i <= n) { bit[i] += x; i += i & -i; } } }; struct UnionFind { vector<int> A; UnionFind(int n) : A(n, -1) {} int find(int x) { if (A[x] < 0) return x; return A[x] = find(A[x]); } void unite(int x, int y) { x = find(x), y = find(y); if (x == y) return; if (A[x] > A[y]) swap(x, y); A[x] += A[y]; A[y] = x; } int ngroups() { int ans = 0; for (auto a : A) if (a < 0) ans++; return ans; } }; vector<ll> getp(ll n) { vector<ll> res; ll a = 2; if (n % 2 == 0) { res.push_back(2); while (n % 2 == 0)n /= 2; } for (ll i = 3; i * i <= n; i += 2) { if (n % i == 0) { res.push_back(i); while (n % i == 0)n /= i; } } if (n != 1) res.push_back(n); return res; } vector<ll> getp2(ll n) { vector<ll> res; ll a = 2; if (n % 2 == 0) { while (n % 2 == 0) { n /= 2; res.push_back(2); } } for (ll i = 3; i * i <= n; i += 2) { if (n % i == 0) { while (n % i == 0) { n /= i; res.push_back(i); } } } if (n != 1) res.push_back(n); return res; } vector<pll> getp3(ll n) { vector<pll> res; ll a = 2; int si = 0; if (n % 2 == 0) { res.push_back(make_pair(2, 0)); while (n % 2 == 0) { n /= 2; res[si].second++; } si++; } for (ll i = 3; i * i <= n; i += 2) { if (n % i == 0) { res.push_back(make_pair(i, 0)); while (n % i == 0) { n /= i; res[si].second++; } si++; } } if (n != 1) { res.push_back(make_pair(n, 1)); } return res; } vector<ll> getDivisors(ll n) { vector<ll> res; ll a = 2; res.push_back(1); for (ll i = 2; i * i <= n; i++) { if (n % i == 0) { res.push_back(i); if (n / i != i) res.push_back(n / i); } } return res; } struct ve { public: vector<ve> child; int _t = INF; ve(int t) :_t(t) {} ve(ve _left, ve _right) { _t = _left._t + _right._t; child.push_back(_left); child.push_back(_right); } bool operator<(const ve& t) const { return _t > t._t; } }; vector<bool> elas(ll n) { vector<bool> r(n); fill(r.begin(), r.end(), 1); r[0] = 0; r[1] = 0; for (ll i = 2; i * i < n; i++) { if (!r[i]) continue; ll ti = i * 2; while (ti < n) { r[ti] = false; ti += i; } } return r; } bool isPrime(ll v) { for (ll i = 2; i * i <= v; i++) { if (v % i == 0) return false; } return true; } class SegTree { public: const static int MAX_N = 100010; const static int DAT_SIZE = (1 << 18) - 1; int N, Q; int A[MAX_N]; ll data[DAT_SIZE], datb[DAT_SIZE]; void init(int _n) { N = 1; while (N < _n) N <<= 1; memset(data, 0, sizeof(data)); memset(datb, 0, sizeof(datb)); } void init(int _n, ll iv) { N = 1; while (N < _n) N <<= 1; rep(i, DAT_SIZE) { data[i] = iv; datb[i] = iv; } } void add(int a, int b, int x) { add(a, b + 1, x, 0, 0, N); } void add(int a, int b, int x, int k, int l, int r) { if (a <= l && r <= b) { data[k] += x; } else if (l < b && a < r) { datb[k] += (min(b, r) - max(a, l)) * x; add(a, b, x, k * 2 + 1, l, (l + r) / 2); add(a, b, x, k * 2 + 2, (l + r) / 2, r); } } void change(int a, int b, int x) { change(a, b + 1, x, 0, 0, N); } void change(int a, int b, int x, int k, int l, int r) { if (a <= l && r <= b) { data[k] = x; } else if (l < b && a < r) { datb[k] = x; change(a, b, x, k * 2 + 1, l, (l + r) / 2); change(a, b, x, k * 2 + 2, (l + r) / 2, r); } } ll sum(int a, int b) { return sum(a, b + 1, 0, 0, N); } ll sum(int a, int b, int k, int l, int r) { if (b <= l || r <= a) { return 0; } if (a <= l && r <= b) { return data[k] * (r - l) + datb[k]; } ll res = (min(b, r) - max(a, l)) * data[k]; res += sum(a, b, k * 2 + 1, l, (l + r) / 2); res += sum(a, b, k * 2 + 2, (l + r) / 2, r); return res; } }; class Segment; class Circle; class Point { public: double x, y; Point(double x = 0, double y = 0) :x(x), y(y) {} Point operator + (Point p) { return Point(x + p.x, y + p.y); } Point operator - (Point p) { return Point(x - p.x, y - p.y); } Point operator * (double a) { return Point(a * x, a * y); } Point operator / (double a) { return Point(x / a, y / a); } double abs() { return sqrt(norm()); } double norm() { return x * x + y * y; } bool operator < (const Point& p)const { return x != p.x ? x < p.x : y < p.y; } bool operator == (const Point& p) const { return fabs(x - p.x) < EPS && fabs(y - p.y) < EPS; } static double dot(Point a, Point b) { return a.x * b.x + a.y * b.y; } static double cross(Point a, Point b) { return a.x * b.y - a.y * b.x; } static bool isOrthogonal(Point a, Point b) { return EQ(dot(a, b), 0.0); } static bool isOrthogonal(Point a1, Point a2, Point b1, Point b2) { return isOrthogonal(a1 - a2, b1 - b2); } static bool isOrthogonal(Segment s1, Segment s2); static bool isPalallel(Point a, Point b) { return EQ(cross(a, b), 0.0); } static bool isPalallel(Point a1, Point a2, Point b1, Point b2) { return isPalallel(a1 - a2, b1 - b2); } static bool isPalallel(Segment s1, Segment s2); static const int COUNTER_CLOCKWISE = 1; static const int CLOCKWISE = -1; static const int ONLINE_BACK = 2; static const int ONLINE_FRONT = -2; static const int ON_SEGMENT = 0; static int ccw(Point p0, Point p1, Point p2) { // 線分はp0とp1でp2がどこにあるかを探る Point a = p1 - p0; Point b = p2 - p0; if (cross(a, b) > EPS) return COUNTER_CLOCKWISE; if (cross(a, b) < -EPS) return CLOCKWISE; if (dot(a, b) < -EPS) return ONLINE_BACK; if (a.norm() < b.norm()) return ONLINE_FRONT; return ON_SEGMENT; } static bool intersect(Point p1, Point p2, Point p3, Point p4) { return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 && ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0); } static bool intersect(Segment s1, Segment s2); static Point project(Segment s, Point p); static Point reflect(Segment s, Point p); static Point getDistance(Point a, Point b) { return (a - b).abs(); } static double getDistanceLP(Segment s, Point p); static double getDistanceSP(Segment s, Point p); static double getDistance(Segment s1, Segment s2); static Point getIntersection(Segment s1, Segment s2); static pair<Point, Point> crossPoints(Circle c, Segment s); static int contains(vector<Point> g, Point p) { int n = g.size(); bool x = false; rep(i, n) { Point a = g[i] - p, b = g[(i + 1) % n] - p; // 線の上に載っているか if (std::abs(cross(a, b)) < EPS && dot(a, b) < EPS) return 1; // pを基準として上下にあるか // または外積が正か?(→にあるか) if (a.y > b.y) swap(a, b); if (a.y < EPS && EPS < b.y && cross(a, b) > EPS) x = !x; } return x ? 2 : 0; } static vector<Point> andrewScan(vector<Point> s) { vector<Point> u, l; if (s.size() < 3) return s; sort(all(s)); u.push_back(s[0]); u.push_back(s[1]); l.push_back(s[s.size() - 1]); l.push_back(s[s.size() - 2]); for (int i = 2; i < s.size(); i++) { for (int _n = u.size(); _n >= 2 && ccw(u[_n - 2], u[_n - 1], s[i]) > CLOCKWISE; _n--) { u.pop_back(); } u.push_back(s[i]); } for (int i = s.size() - 3; i >= 0; i--) { for (int _n = l.size(); _n >= 2 && ccw(l[_n - 2], l[_n - 1], s[i]) > CLOCKWISE; _n--) { l.pop_back(); } l.push_back(s[i]); } reverse(all(l)); for (int i = u.size() - 2; i >= 1; i--) { l.push_back(u[i]); } return l; } void get_cin() { cin >> x >> y; } }; class Segment { public: Point p1, p2; Segment() {} Segment(Point p1, Point p2) :p1(p1), p2(p2) {} void get_cin() { cin >> p1.x >> p1.y >> p2.x >> p2.y; } Point p1tp2() { return p2 - p1; } Point p2tp1() { return p1 - p2; } double abs() { return std::abs(norm()); } double norm() { return (p2 - p1).norm(); } }; bool Point::isOrthogonal(Segment s1, Segment s2) { return EQ(dot(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0); } bool Point::isPalallel(Segment s1, Segment s2) { return EQ(cross(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0); } bool Point::intersect(Segment s1, Segment s2) { return intersect(s1.p1, s1.p2, s2.p1, s2.p2); } Point Point::project(Segment s, Point p) { Point base = s.p2 - s.p1; double r = Point::dot(p - s.p1, base) / base.norm(); return s.p1 + base * r; } Point Point::reflect(Segment s, Point p) { return (project(s, p) * 2) - p; } double Point::getDistanceLP(Segment s, Point p) { return std::abs(cross(s.p2 - s.p1, p - s.p1) / (s.p2 - s.p1).abs()); } double Point::getDistanceSP(Segment s, Point p) { if (dot(s.p2 - s.p1, p - s.p1) < 0.0) return (p - s.p1).abs(); if (dot(s.p1 - s.p2, p - s.p2) < 0.0) return (p - s.p2).abs(); return getDistanceLP(s, p); } double Point::getDistance(Segment s1, Segment s2) { if (intersect(s1, s2)) return 0.0; return min({ getDistanceSP(s1,s2.p1),getDistanceSP(s1,s2.p2) ,getDistanceSP(s2,s1.p1),getDistanceSP(s2,s1.p2) }); } Point Point::getIntersection(Segment s1, Segment s2) { // (s1.p1 - s2.p1).norm() auto bs = s1.p2 - s1.p1; auto n1 = s2.p1 - s1.p1; auto n2 = s2.p2 - s1.p1; auto c1 = std::abs(cross(n1, bs)) / bs.norm(); auto c2 = std::abs(cross(n2, bs)) / bs.norm(); return s2.p1 + (s2.p2 - s2.p1) * (c1 / (c1 + c2)); // c1:c2=t:1-t // c2t=(1-t)c1 // t/(1-t)=c1/(c1+c2) // } double arg(Point p) { return atan2(p.y, p.x); } Point polar(double a, double r) { return Point(cos(r) * a, sin(r) * a); } class Circle { public: Point c; double r; Circle(Point c = Point(), double r = 0.0) : c(c), r(r) {} void get_cin() { cin >> c.x >> c.y >> r; } static pair<Point, Point> getCrossPoints(Circle c1, Circle c2) { double d = (c1.c - c2.c).abs(); // 中心点どうしの距離 double a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d)); double t = arg(c2.c - c1.c); return make_pair(c1.c + polar(c1.r, t + a), c1.c + polar(c1.r, t - a)); } }; pair<Point, Point> Point::crossPoints(Circle c, Segment s) { auto pp = project(s, c.c); auto f = (pp - c.c).norm(); auto mu = sqrt(c.r * c.r - f); auto e = s.p1tp2() / s.p1tp2().abs(); return make_pair(pp + e * mu, pp - e * mu); } ll divRm(string s, ll x) { ll r = 0; for (ll i = 0; i < s.size(); i++) { r *= 10; r += s[i] - '0'; r %= x; } return r; } ll cmbi(ll x, ll b) { ll res = 1; for (size_t i = 0; i < b; i++) { res *= x - i; res %= INF; res *= inv[b - i]; res %= INF; } return res; } double digsum(ll x) { ll res = 0; while (x > 0) { res += x % 10; x /= 10; } return res; } bool check_parindrome(string s) { int n = s.size(); rep(i, n / 2) { if (s[i] != s[n - i - 1]) { return false; } } return true; } ll npr(ll n, ll r) { if (r == 0) return 1; return inff(fac[n] * modinv(fac[n - r])); } vl zalgo(string s) { ll c = 0; vl a(s.size()); ll si = s.size(); rep2(i,1, s.size()) { if (i + a[i - c] < c + a[c]) { a[i] = a[i - c]; } else { ll j = max(0LL,a[c] - (i - c)); while (i + j < si && s[j] == s[i+j]) { j++; } a[i] = j; c = i; } } a[0] = s.size(); return a; } string decStrNum(string s) { ll si = s.size(); for (int i = si - 1; i >= 0; i--) { if (s[i] == '0') { s[i] = '9'; continue; } s[i] = s[i] - 1; break; } return s; } // ここまでライブラリ // ここからコード void solv() { cin >> n; ll s[55]; rep(i, n) cin >> s[i]; cin >> m; ll tb[55][55]; rep(i,n) rep(j,n) tb[i][j] = INF; rep(i, m) { ll a, b, c; cin >> a >> b >> c; tb[a][b] = c; tb[b][a] = c; } rep(k, n) rep(i, n) rep(j, n) tb[i][j] = min(tb[i][j], tb[i][k] + tb[k][j]); ll res = big; rep2(i,1,n-1) rep2(j, 1, n - 1) { if (i == j) continue; res = min(res, tb[0][i] + tb[i][j] + tb[j][n - 1] + s[i] + s[j]); } cout << res << endl; } int main() { COMinit(); solv(); return 0; }