結果

問題 No.957 植林
ユーザー KoDKoD
提出日時 2020-07-17 20:04:35
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 71 ms / 2,000 ms
コード長 12,595 bytes
コンパイル時間 1,198 ms
コンパイル使用メモリ 99,496 KB
実行使用メモリ 10,496 KB
最終ジャッジ日時 2024-11-29 15:52:14
合計ジャッジ時間 4,409 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 12 ms
8,960 KB
testcase_04 AC 13 ms
8,960 KB
testcase_05 AC 11 ms
9,728 KB
testcase_06 AC 16 ms
10,112 KB
testcase_07 AC 12 ms
9,088 KB
testcase_08 AC 11 ms
9,600 KB
testcase_09 AC 10 ms
9,600 KB
testcase_10 AC 11 ms
9,856 KB
testcase_11 AC 10 ms
9,600 KB
testcase_12 AC 10 ms
9,728 KB
testcase_13 AC 8 ms
7,808 KB
testcase_14 AC 11 ms
9,856 KB
testcase_15 AC 10 ms
9,728 KB
testcase_16 AC 9 ms
7,936 KB
testcase_17 AC 9 ms
9,088 KB
testcase_18 AC 52 ms
9,472 KB
testcase_19 AC 54 ms
9,728 KB
testcase_20 AC 56 ms
9,728 KB
testcase_21 AC 59 ms
10,112 KB
testcase_22 AC 62 ms
10,112 KB
testcase_23 AC 64 ms
10,112 KB
testcase_24 AC 67 ms
10,112 KB
testcase_25 AC 71 ms
10,368 KB
testcase_26 AC 68 ms
10,496 KB
testcase_27 AC 67 ms
10,496 KB
testcase_28 AC 67 ms
10,496 KB
testcase_29 AC 68 ms
10,496 KB
testcase_30 AC 69 ms
10,496 KB
testcase_31 AC 54 ms
9,472 KB
testcase_32 AC 57 ms
9,728 KB
testcase_33 AC 58 ms
9,856 KB
testcase_34 AC 58 ms
10,112 KB
testcase_35 AC 60 ms
10,112 KB
testcase_36 AC 61 ms
9,984 KB
testcase_37 AC 65 ms
10,112 KB
testcase_38 AC 68 ms
10,496 KB
testcase_39 AC 66 ms
10,368 KB
testcase_40 AC 68 ms
10,496 KB
testcase_41 AC 9 ms
10,368 KB
testcase_42 AC 10 ms
10,368 KB
testcase_43 AC 10 ms
10,496 KB
testcase_44 AC 13 ms
10,496 KB
testcase_45 AC 2 ms
5,248 KB
testcase_46 AC 2 ms
5,248 KB
testcase_47 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#line 1 "main.cpp"
/**
 * @title Template
 */

#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
#include <queue>
#include <list>

template <class T, class U>
inline bool chmin(T &lhs, const U &rhs) {
  if (lhs > rhs) { lhs = rhs; return true; }
  return false;
}

template <class T, class U>
inline bool chmax(T &lhs, const U &rhs) {
  if (lhs < rhs) { lhs = rhs; return true; }
  return false;
}

struct range {
  using itr = int64_t;
  struct iterator {
    itr i;
    constexpr iterator(itr i_) noexcept : i(i_) { }
    constexpr void operator ++ () noexcept { ++i; }
    constexpr itr operator * () const noexcept { return i; }
    constexpr bool operator != (iterator x) const noexcept { return i != x.i; }
  };
  const iterator l, r;
  constexpr range(itr l_, itr r_) noexcept : l(l_), r(std::max(l_, r_)) { }
  constexpr iterator begin() const noexcept { return l; }
  constexpr iterator end() const noexcept { return r; }
};

struct revrange {
  using itr = int64_t;
  struct iterator {
    itr i;
    constexpr iterator(itr i_) noexcept : i(i_) { }
    constexpr void operator ++ () noexcept { --i; }
    constexpr itr operator * () const noexcept { return i; }
    constexpr bool operator != (iterator x) const noexcept { return i != x.i; }
  };
  const iterator l, r;
  constexpr revrange(itr l_, itr r_) noexcept : l(l_ - 1), r(std::max(l_, r_) - 1) { }
  constexpr iterator begin() const noexcept { return r; }
  constexpr iterator end() const noexcept { return l; }
};

#line 2 "/Users/kodamankod/Desktop/Programming/Library/other/fast_io.cpp"

#include <cstddef>
#include <cstdint>
#include <cstring>
#line 7 "/Users/kodamankod/Desktop/Programming/Library/other/fast_io.cpp"

namespace fast_io {
  static constexpr size_t buf_size = 1 << 18;
  static constexpr size_t buf_margin = 1;
  static constexpr size_t block_size = 10000;
  static constexpr size_t integer_size = 20;

  static char inbuf[buf_size + buf_margin] = {};
  static char outbuf[buf_size + buf_margin] = {};
  static char block_str[block_size * 4 + buf_margin] = {};

  static constexpr uint64_t power10[] = {
    1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
    1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000,
    100000000000000, 1000000000000000, 10000000000000000, 100000000000000000,
    1000000000000000000, 10000000000000000000u
  };

  class scanner {
  private:
    size_t M_in_pos = 0, M_in_end = buf_size;

    void M_load() { 
      M_in_end = fread(inbuf, 1, buf_size, stdin); 
      inbuf[M_in_end] = '\0';  
    }
    void M_reload() {
      size_t length = M_in_end - M_in_pos;
      memmove(inbuf, inbuf + M_in_pos, length);
      M_in_end = length + fread(inbuf + length, 1, buf_size - length, stdin);
      inbuf[M_in_end] = '\0';
      M_in_pos = 0;
    }

    void M_ignore_space() {
      while (inbuf[M_in_pos] <= ' ') {
        if (__builtin_expect(++M_in_pos == M_in_end, 0)) M_reload();
      }
    }

    char M_next() { return inbuf[M_in_pos++]; }
    char M_next_nonspace() {
      M_ignore_space();
      return inbuf[M_in_pos++];
    }

  public:
    scanner() { M_load(); }
    
    void scan(char &c) { c = M_next_nonspace(); }
    void scan(std::string &s) {
      M_ignore_space();
      s = "";
      do {
        size_t start = M_in_pos;
        while (inbuf[M_in_pos] > ' ') ++M_in_pos;
        s += std::string(inbuf + start, inbuf + M_in_pos);
        if (inbuf[M_in_pos] != '\0') break;
        M_reload();
      } while (true);
    }

    template <class T>
    typename std::enable_if<std::is_integral<T>::value, void>::type scan(T &x) {
      char c = M_next_nonspace();
      if (__builtin_expect(M_in_pos + integer_size >= M_in_end, 0)) M_reload();
      bool n = false;
      if (c == '-') n = true, x = 0;
      else x = c & 15;
      while ((c = M_next()) >= '0') x = x * 10 + (c & 15);
      if (n) x = -x;
    }

    template <class T, class... Args>
    void scan(T &x, Args&... args) {
      scan(x); scan(args...);
    }

    template <class T>
    scanner& operator >> (T &x) {
      scan(x); return *this;
    }

  };

  class printer {
  private:
    size_t M_out_pos = 0;

    void M_flush() {
      fwrite(outbuf, 1, M_out_pos, stdout);
      M_out_pos = 0;
    }

    void M_precompute() {
      for (size_t i = 0; i < block_size; ++i) {
        size_t j = 4, k = i;
        while (j--) {
          block_str[i * 4 + j] = k % 10 + '0';
          k /= 10;
        }
      }
    }

    static constexpr size_t S_integer_digits(uint64_t n) {
      if (n >= power10[10]) {
        if (n >= power10[19]) return 20;
        if (n >= power10[18]) return 19;
        if (n >= power10[17]) return 18;
        if (n >= power10[16]) return 17;
        if (n >= power10[15]) return 16;
        if (n >= power10[14]) return 15;
        if (n >= power10[13]) return 14;
        if (n >= power10[12]) return 13;
        if (n >= power10[11]) return 12;
        return 11;
      }
      else {
        if (n >= power10[9]) return 10;
        if (n >= power10[8]) return 9;
        if (n >= power10[7]) return 8;
        if (n >= power10[6]) return 7;
        if (n >= power10[5]) return 6;
        if (n >= power10[4]) return 5;
        if (n >= power10[3]) return 4;
        if (n >= power10[2]) return 3;
        if (n >= power10[1]) return 2;
        return 1;
      }
    }

  public:
    printer() { M_precompute(); }
    ~printer() { M_flush(); }

    void print(char c) { 
      outbuf[M_out_pos++] = c;
      if (__builtin_expect(M_out_pos == buf_size, 0)) M_flush();
    }
    void print(const char *s) {
      while (*s != 0) {
        outbuf[M_out_pos++] = *s++;
        if (M_out_pos == buf_size) M_flush();
      }
    }
    void print(const std::string &s) {
      for (auto c: s) {
        outbuf[M_out_pos++] = c;
        if (M_out_pos == buf_size) M_flush();
      }
    }
    
    template <class T>
    typename std::enable_if<std::is_integral<T>::value, void>::type print(T x) {
      if (__builtin_expect(M_out_pos + integer_size >= buf_size, 0)) M_flush();
      if (x < 0) print('-'), x = -x;
      size_t digit = S_integer_digits(x);
      size_t len = digit;
      while (len >= 4) {
        len -= 4;
        memcpy(outbuf + M_out_pos + len, block_str + (x % block_size) * 4, 4);
        x /= 10000;
      }
      memcpy(outbuf + M_out_pos, block_str + x * 4 + 4 - len, len);
      M_out_pos += digit;
    }

    template <class T, class... Args>
    void print(const T &x, const Args&... args) {
      print(x); print(' '); print(args...);
    }

    template <class... Args>
    void println(const Args&... args) {
      print(args...); print('\n');
    }

    template <class T>
    printer& operator << (const T &x) {
      print(x); return *this;
    }

  };

};

/**
 * @title Fast Input/Output
 */
#line 57 "main.cpp"

using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;

constexpr i32 inf32 = (i32(1) << 30) - 1;
constexpr i64 inf64 = (i64(1) << 62) - 1;

struct edge_t {
  i32 to; 
  i64 cap; 
  i32 rev;
};

fast_io::scanner cin;
fast_io::printer cout;

class Stack {
private:
    const int N, H;
    std::vector<int> node;
public:
    Stack(const int _N, const int _H) : N(_N), H(_H), node(N+H){ clear(); }
    bool empty(const int h) const { return node[N+h] == N+h; }
    int top(const int h) const { return node[N+h]; }
    void pop(const int h){ node[N+h] = node[node[N+h]]; }
    void push(const int h, const int u){ node[u] = node[N+h], node[N+h] = u; }
    void clear(){ std::iota(node.begin() + N, node.end(), N); }
};

class List {
public:
    struct node {
        int prev, next;
    };
    const int N, H;
    std::vector<node> dat;
    List(const int _N, const int _H) : N(_N), H(_H), dat(N+H){ clear(); }
    bool empty(const int h) const { return (dat[N+h].next == N+h); }
    bool more_one(const int h) const { return dat[N+h].prev != dat[N+h].next; }
    void insert(const int h, const int u){
        dat[u].prev = dat[N+h].prev, dat[u].next = N+h;
        dat[dat[N+h].prev].next = u, dat[N+h].prev = u;
    }
    void erase(const int u){
        dat[dat[u].prev].next = dat[u].next, dat[dat[u].next].prev = dat[u].prev;
    }
    void clear(){
        for(int i = N; i < N+H; ++i) dat[i].prev = dat[i].next = i;
    }
};

int main() {

  i32 H, W;
  cin.scan(H, W);

  i32 V = H + W + 2;
  i32 source = H + W, sink = H + W + 1;
  std::vector<std::vector<edge_t>> graph(V);

  auto add_edge = [&](i32 u, i32 v, i64 c) {
    graph[u].push_back(edge_t{ v, c, (i32) graph[v].size() });
    graph[v].push_back(edge_t{ u, 0, (i32) graph[u].size() - 1 });
  };

  std::vector<i64> accum(H);
  for (auto i: range(0, H)) {
    for (auto j: range(0, W)) {
      i32 g;
      cin.scan(g);
      accum[i] += g;
      add_edge(i, H + j, g);
    }
  }
  i64 sum = 0;
  for (auto i: range(0, H)) {
    i64 r;
    cin.scan(r);
    i64 min = std::min(accum[i], r);
    sum += r - min;
    add_edge(source, i, accum[i] - min);
  }
  for (auto i: range(0, W)) {
    i64 r;
    cin.scan(r);
    sum += r;
    add_edge(H + i, sink, r);
  }

  i32 min_gap, max_active;
  Stack active(V, V);
  List all(V, V);
  std::vector<i32> height(V), seen(V);
  std::vector<i64> excess(V);
  i32 counter = 0;

  auto push = [&](auto u, edge_t &e) { // Push flow from the node.
    i64 flow = std::min(e.cap, excess[u]);
    e.cap -= flow;
    graph[e.to][e.rev].cap += flow;
    excess[u] -= flow;
    excess[e.to] += flow;
  };

  auto relabel = [&](auto u) { // Relabel the node so that there will be an admissible edge.
    ++counter;
    i32 min = V + 1;
    for (auto &e: graph[u]) {
      if (e.cap > 0) {
        chmin(min, height[e.to] + 1);
      }
    }
    height[u] = min;
  };

  auto reverse_bfs = [&] { // Compute exact heights.
    std::fill(height.begin(), height.end(), V + 1);
    height[sink] = 0;
    std::queue<i32> que;
    que.push(sink);
    while (!que.empty()) {
      i32 u = que.front();
      que.pop();
      for (auto e: graph[u]) {
        if (graph[e.to][e.rev].cap > 0) {
          if (chmin(height[e.to], height[u] + 1)) {
            que.push(e.to);
          }
        }
      }
    }
  };

  auto set_active = [&] { // Count nodes with each height and set active nodes.
    min_gap = V;
    max_active = 0;
    active.clear();
    all.clear();
    for (auto u: range(0, V)) {
      if (height[u] < V) {
        if (excess[u] > 0 && u != sink) {
          active.push(height[u], u);
          chmax(max_active, height[u]);
        }
        all.insert(height[u], u);
      }
    }
    for (auto h: range(0, V)) {
      if (all.empty(h)) {
        min_gap = h;
        break;
      }
    }
  };

  auto discharge = [&](auto u) { // Apply push/relabel until the node becomes inactive.
    while (true) {
      auto &e = graph[u][seen[u]];
      if (e.cap > 0 && height[u] == height[e.to] + 1) {
        {
          if (excess[e.to] == 0 && e.to != sink) {
            active.push(height[e.to], e.to);
            chmax(max_active, height[e.to]);
          }
        }
        push(u, e);
        if (excess[u] == 0) {
          break;
        }
      }
      seen[u]++;
      if (seen[u] == graph[u].size()) {
        seen[u] = 0;
        if (all.more_one(height[u])) {
          all.erase(u);
          relabel(u);
          if (height[u] > min_gap) {
            height[u] = V + 1;
            break;
          }
          if (height[u] == min_gap) {
            min_gap++;
          } 
          all.insert(height[u], u);
        }
        else {
          for (auto i: range(height[u], min_gap)) {
            for (i32 id = all.dat[V + i].next; id < V; id = all.dat[id].next) {
              height[id] = V + 1;
            }
            all.dat[V + i].prev = all.dat[V + i].next = V + i;
          }
          break;
        }
      }
    }
  };
  
  { // Preprocess 
    reverse_bfs();
    if (height[source] == V + 1) {
      cout.println(sum);
      return 0;
    }
    for (auto &e: graph[source]) {
      excess[source] += e.cap;
      push(source, e);
    }
    height[source] = V;
    set_active();
  }

  { // Main Process
    while (max_active > 0) {
      if (active.empty(max_active)) {
        --max_active;
        continue;
      }
      const auto u = active.top(max_active);
      active.pop(max_active);
      discharge(u);
      if (counter >= V * 6) {
        counter = 0;
        reverse_bfs();
        set_active();
      }
      chmin(max_active, min_gap - 1);
    }
  }
  
  cout.println(sum - excess[sink]);

  return 0;
}
0