結果
問題 | No.1115 二つの数列 / Two Sequences |
ユーザー |
![]() |
提出日時 | 2020-07-17 21:30:39 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 47 ms / 2,000 ms |
コード長 | 2,481 bytes |
コンパイル時間 | 2,034 ms |
コンパイル使用メモリ | 201,508 KB |
最終ジャッジ日時 | 2025-01-11 22:13:42 |
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 35 |
ソースコード
#define _USE_MATH_DEFINES#include <bits/stdc++.h>using namespace std;#define FOR(i,m,n) for(int i=(m);i<(n);++i)#define REP(i,n) FOR(i,0,n)#define ALL(v) (v).begin(),(v).end()using ll = long long;const int INF = 0x3f3f3f3f;const ll LINF = 0x3f3f3f3f3f3f3f3fLL;const double EPS = 1e-8;const int MOD = 1000000007;// const int MOD = 998244353;const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }struct IOSetup {IOSetup() {cin.tie(nullptr);ios_base::sync_with_stdio(false);cout << fixed << setprecision(20);}} iosetup;template <typename Abelian>struct BIT0based {BIT0based(int n, const Abelian UNITY = 0) : n(n), UNITY(UNITY), dat(n, UNITY) {}void add(int idx, Abelian val) {while (idx < n) {dat[idx] += val;idx |= idx + 1;}}Abelian sum(int idx) const {Abelian res = UNITY;--idx;while (idx >= 0) {res += dat[idx];idx = (idx & (idx + 1)) - 1;}return res;}Abelian sum(int left, int right) const {return left < right ? sum(right) - sum(left) : UNITY;}Abelian operator[](const int idx) const { return sum(idx, idx + 1); }int lower_bound(Abelian val) const {if (val <= UNITY) return 0;int res = 0, exponent = 1;while (exponent <= n) exponent <<= 1;for (int mask = exponent >> 1; mask > 0; mask >>= 1) {if (res + mask - 1 < n && dat[res + mask - 1] < val) {val -= dat[res + mask - 1];res += mask;}}return res;}private:int n;const Abelian UNITY;vector<Abelian> dat;};template <typename T>ll inversion_number(const vector<T> &a) {int n = a.size();vector<T> comp(a);sort(ALL(comp));comp.erase(unique(ALL(comp)), comp.end());BIT0based<int> bit(comp.size());ll res = 0;REP(i, n) {int idx = lower_bound(ALL(comp), a[i]) - comp.begin();res += i - bit.sum(idx);bit.add(idx, 1);}return res;}int main() {int n; cin >> n;vector<int> pos(n);REP(i, n) {int a; cin >> a; --a;pos[a] = i;};vector<int> a(n);REP(i, n) {int b; cin >> b; --b;a[pos[b]] = i;}cout << inversion_number(a) << '\n';return 0;}