結果

問題 No.1115 二つの数列 / Two Sequences
ユーザー torisasami4
提出日時 2020-07-17 21:33:09
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 93 ms / 2,000 ms
コード長 9,588 bytes
コンパイル時間 1,675 ms
コンパイル使用メモリ 176,736 KB
実行使用メモリ 39,040 KB
最終ジャッジ日時 2024-11-29 21:56:30
合計ジャッジ時間 5,019 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 35
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb(x) push_back(x)
#define mp(a, b) make_pair(a, b)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define lscan(x) scanf("%I64d", &x)
#define lprint(x) printf("%I64d", x)
const int mod = 1000000007;
ll gcd(ll a, ll b)
{
ll c = a % b;
while (c != 0)
{
a = b;
b = c;
c = a % b;
}
return b;
}
long long extGCD(long long a, long long b, long long &x, long long &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
long long d = extGCD(b, a % b, y, x);
y -= a / b * x;
return d;
}
struct UnionFind
{
vector<ll> data;
UnionFind(int sz)
{
data.assign(sz, -1);
}
bool unite(int x, int y)
{
x = find(x), y = find(y);
if (x == y)
return (false);
if (data[x] > data[y])
swap(x, y);
data[x] += data[y];
data[y] = x;
return (true);
}
int find(int k)
{
if (data[k] < 0)
return (k);
return (data[k] = find(data[k]));
}
ll size(int k)
{
return (-data[find(k)]);
}
};
ll M = 1000000007;
vector<ll> fac(2000011); //n!(mod M)
vector<ll> ifac(2000011); //k!^{M-2} (mod M)
ll mpow(ll x, ll n)
{
ll ans = 1;
while (n != 0)
{
if (n & 1)
ans = ans * x % M;
x = x * x % M;
n = n >> 1;
}
return ans;
}
ll mpow2(ll x, ll n, ll mod)
{
ll ans = 1;
while (n != 0)
{
if (n & 1)
ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
return ans;
}
void setcomb()
{
fac[0] = 1;
ifac[0] = 1;
for (ll i = 0; i < 2000010; i++)
{
fac[i + 1] = fac[i] * (i + 1) % M; // n!(mod M)
}
ifac[2000010] = mpow(fac[2000010], M - 2);
for (ll i = 2000010; i > 0; i--)
{
ifac[i - 1] = ifac[i] * i % M;
}
}
ll comb(ll a, ll b)
{
if (a == 0 && b == 0)
return 1;
if (a < b || a < 0)
return 0;
ll tmp = ifac[a - b] * ifac[b] % M;
return tmp * fac[a] % M;
}
ll perm(ll a, ll b)
{
if (a == 0 && b == 0)
return 1;
if (a < b || a < 0)
return 0;
return fac[a] * ifac[a - b] % M;
}
long long modinv(long long a)
{
long long b = M, u = 1, v = 0;
while (b)
{
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= M;
if (u < 0)
u += M;
return u;
}
ll modinv2(ll a, ll mod)
{
ll b = mod, u = 1, v = 0;
while (b)
{
ll t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= mod;
if (u < 0)
u += mod;
return u;
}
template <int mod>
struct ModInt
{
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p)
{
if ((x += p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p)
{
if ((x += mod - p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p)
{
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p)
{
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const
{
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0)
{
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const
{
ModInt ret(1), mul(x);
while (n > 0)
{
if (n & 1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p)
{
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a)
{
int64_t t;
is >> t;
a = ModInt<mod>(t);
return (is);
}
static int get_mod() { return mod; }
};
using mint = ModInt<mod>;
vector<vector<ll>> mul(vector<vector<ll>> a, vector<vector<ll>> b, int n)
{
int i, j, k, t;
vector<vector<ll>> c(n);
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
t = 0;
for (k = 0; k < n; k++)
t = (t + a[i][k] * b[k][j] % M) % M;
c[i].push_back(t);
}
}
return c;
}
template <typename Monoid>
struct SegmentTree
{
using F = function<Monoid(Monoid, Monoid)>;
int sz;
vector<Monoid> seg;
const F f;
const Monoid M1;
SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1)
{
sz = 1;
while (sz < n)
sz <<= 1;
seg.assign(2 * sz, M1);
}
void set(int k, const Monoid &x)
{
seg[k + sz] = x;
}
void build()
{
for (int k = sz - 1; k > 0; k--)
{
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
void update(int k, const Monoid &x)
{
k += sz;
seg[k] = x;
while (k >>= 1)
{
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
Monoid query(int a, int b)
{
Monoid L = M1, R = M1;
for (a += sz, b += sz; a < b; a >>= 1, b >>= 1)
{
if (a & 1)
L = f(L, seg[a++]);
if (b & 1)
R = f(seg[--b], R);
}
return f(L, R);
}
Monoid operator[](const int &k) const
{
return seg[k + sz];
}
template <typename C>
int find_subtree(int a, const C &check, Monoid &M, bool type)
{
while (a < sz)
{
Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]);
if (check(nxt))
a = 2 * a + type;
else
M = nxt, a = 2 * a + 1 - type;
}
return a - sz;
}
template <typename C>
int find_first(int a, const C &check)
{
Monoid L = M1;
if (a <= 0)
{
if (check(f(L, seg[1])))
return find_subtree(1, check, L, false);
return -1;
}
int b = sz;
for (a += sz, b += sz; a < b; a >>= 1, b >>= 1)
{
if (a & 1)
{
Monoid nxt = f(L, seg[a]);
if (check(nxt))
return find_subtree(a, check, L, false);
L = nxt;
++a;
}
}
return -1;
}
template <typename C>
int find_last(int b, const C &check)
{
Monoid R = M1;
if (b >= sz)
{
if (check(f(seg[1], R)))
return find_subtree(1, check, R, true);
return -1;
}
int a = sz;
for (b += sz; a < b; a >>= 1, b >>= 1)
{
if (b & 1)
{
Monoid nxt = f(seg[--b], R);
if (check(nxt))
return find_subtree(b, check, R, true);
R = nxt;
}
}
return -1;
}
};
template <unsigned mod>
struct RollingHash
{
vector<unsigned> hashed, power;
inline unsigned mul(unsigned a, unsigned b) const
{
unsigned long long x = (unsigned long long)a * b;
unsigned xh = (unsigned)(x >> 32), xl = (unsigned)x, d, m;
asm("divl %4; \n\t"
: "=a"(d), "=d"(m)
: "d"(xh), "a"(xl), "r"(mod));
return m;
}
RollingHash(const string &s, unsigned base = 10007)
{
int sz = (int)s.size();
hashed.assign(sz + 1, 0);
power.assign(sz + 1, 0);
power[0] = 1;
for (int i = 0; i < sz; i++)
{
power[i + 1] = mul(power[i], base);
hashed[i + 1] = mul(hashed[i], base) + s[i];
if (hashed[i + 1] >= mod)
hashed[i + 1] -= mod;
}
}
unsigned get(int l, int r) const
{
unsigned ret = hashed[r] + mod - mul(hashed[l], power[r - l]);
if (ret >= mod)
ret -= mod;
return ret;
}
unsigned connect(unsigned h1, int h2, int h2len) const
{
unsigned ret = mul(h1, power[h2len]) + h2;
if (ret >= mod)
ret -= mod;
return ret;
}
int LCP(const RollingHash<mod> &b, int l1, int r1, int l2, int r2)
{
int len = min(r1 - l1, r2 - l2);
int low = -1, high = len + 1;
while (high - low > 1)
{
int mid = (low + high) / 2;
if (get(l1, l1 + mid) == b.get(l2, l2 + mid))
low = mid;
else
high = mid;
}
return (low);
}
};
using RH = RollingHash<1000000007>;
template <typename T>
struct edge
{
int src, to;
T cost;
edge(int to, T cost) : src(-1), to(to), cost(cost) {}
edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}
edge &operator=(const int &x)
{
to = x;
return *this;
}
operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnWeightedGraph = vector<vector<int>>;
template <typename T>
using Matrix = vector<vector<T>>;
template <typename G>
struct DoublingLowestCommonAncestor
{
const int LOG;
vector<int> dep;
const G &g;
vector<vector<int>> table;
DoublingLowestCommonAncestor(const G &g) : g(g), dep(g.size()), LOG(32 - __builtin_clz(g.size()))
{
table.assign(LOG, vector<int>(g.size(), -1));
}
void dfs(int idx, int par, int d)
{
table[0][idx] = par;
dep[idx] = d;
for (auto &to : g[idx])
{
if (to != par)
dfs(to, idx, d + 1);
}
}
void build()
{
dfs(0, -1, 0);
for (int k = 0; k + 1 < LOG; k++)
{
for (int i = 0; i < table[k].size(); i++)
{
if (table[k][i] == -1)
table[k + 1][i] = -1;
else
table[k + 1][i] = table[k][table[k][i]];
}
}
}
int query(int u, int v)
{
if (dep[u] > dep[v])
swap(u, v);
for (int i = LOG - 1; i >= 0; i--)
{
if (((dep[v] - dep[u]) >> i) & 1)
v = table[i][v];
}
if (u == v)
return u;
for (int i = LOG - 1; i >= 0; i--)
{
if (table[i][u] != table[i][v])
{
u = table[i][u];
v = table[i][v];
}
}
return table[0][u];
}
};
int main()
{
ll n, i, a[111111], b[111111], p[111111];
cin >> n;
for (i = 0; i < n;i++)
cin >> a[i];
for (i = 0; i < n; i++)
cin >> b[i];
for (i = 0; i < n;i++)
p[b[i]] = i;
for (i = 0; i < n;i++)
a[i] = p[a[i]];
SegmentTree<ll> seg(n, [](ll a, ll b) { return a + b; }, 0);
for (i = 0; i < n;i++)
seg.set(i, 0);
seg.build();
ll ans = 0;
for (i = 0; i < n; i++){
ans += seg.query(a[i], n);
seg.update(a[i], 1);
}
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0