結果
問題 | No.1117 数列分割 |
ユーザー | jell |
提出日時 | 2020-07-18 14:45:42 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 13,223 bytes |
コンパイル時間 | 2,805 ms |
コンパイル使用メモリ | 214,480 KB |
最終ジャッジ日時 | 2024-11-30 20:49:24 |
合計ジャッジ時間 | 3,206 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp:104:8: error: 'template<class T> struct read' redeclared as different kind of entity 104 | struct read | ^~~~ In file included from /usr/include/x86_64-linux-gnu/bits/sigstksz.h:24, from /usr/include/signal.h:328, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/csignal:42, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/x86_64-pc-linux-gnu/bits/stdc++.h:43, from main.cpp:15: /usr/include/unistd.h:371:16: note: previous declaration 'ssize_t read(int, void*, size_t)' 371 | extern ssize_t read (int __fd, void *__buf, size_t __nbytes) __wur | ^~~~ main.cpp:112:8: error: 'read' is not a class template 112 | struct read<void> | ^~~~ main.cpp:113:1: error: explicit specialization of non-template 'read' 113 | { | ^ main.cpp: In constructor 'solver::solver()': main.cpp:347:21: error: expected primary-expression before 'int' 347 | s+=read<int>(); | ^~~
ソースコード
#pragma region preprocessor #ifdef LOCAL //* #define _GLIBCXX_DEBUG // gcc /*/ #define _LIBCPP_DEBUG 0 // clang //*/ // #define __buffer_check__ #else #pragma GCC optimize("Ofast") // #define NDEBUG #endif #define __precision__ 15 #define __iostream_untie__ true #include <bits/stdc++.h> #include <ext/rope> #ifdef LOCAL #include "dump.hpp" #define mesg(str) std::cerr << "[ " << __LINE__ << " : " << __FUNCTION__ << " ] " << str << "\n" #else #define dump(...) ((void)0) #define mesg(str) ((void)0) #endif #pragma endregion #pragma region std-overload namespace std { // hash template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } }; template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } }; // iostream template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; } template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; } template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } }; template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } }; template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); } template <> istream &operator>>(istream &is, tuple<> &t) { return is; } template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } }; template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } }; template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); } template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; } template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr> istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; } template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr> ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; } } // namespace std #pragma endregion #pragma region config namespace config { const auto start_time{std::chrono::system_clock::now()}; int64_t elapsed() { using namespace std::chrono; const auto end_time{std::chrono::system_clock::now()}; return duration_cast<milliseconds>(end_time - start_time).count(); } __attribute__((constructor)) void setup() { using namespace std; if(__iostream_untie__) ios::sync_with_stdio(false), cin.tie(nullptr); cout << fixed << setprecision(__precision__); #ifdef DEBUG freopen("debug.out","w",stdout); freopen("debug.err","w",stderr); if(!freopen("debug.in","r",stdin)) { cerr << "error: \"./debug.in\" not found.\n"; exit(EXIT_FAILURE); } #endif #ifdef stderr_path freopen(stderr_path, "a", stderr); #endif #ifdef LOCAL cerr << fixed << setprecision(__precision__) << boolalpha << "\n----- stderr at LOCAL -----\n\n"; atexit([]{ cerr << "\n----- Exec time : " << elapsed() << " ms -----\n\n"; }); #endif #ifdef __buffer_check__ atexit([]{ ofstream cnsl("CON"); char bufc; if(cin >> bufc) cnsl << "\n\033[1;35mwarning\033[0m: buffer not empty.\n\n"; }); #endif } } // namespace config #pragma endregion #pragma region utility // lambda wrapper for recursive method. template <class lambda_type> class fixed_point { lambda_type func; public: fixed_point(lambda_type &&f) : func(std::move(f)) {} template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); } }; // read with std::cin. template <class T = void> struct read { typename std::remove_const<T>::type value; template <class... types> read(types... args) : value(args...) { std::cin >> value; } operator T() const { return value; } }; template <> struct read<void> { template <class T> operator T() const { T value; std::cin >> value; return value; } }; // substitute y for x if x > y. template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitute y for x if x < y. template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; } // binary search on discrete range. template <class iter_type, class pred_type> iter_type binary(iter_type __ok, iter_type __ng, pred_type pred) { assert(__ok != __ng); std::ptrdiff_t dist(__ng - __ok); while(std::abs(dist) > 1) { iter_type mid(__ok + dist / 2); if(pred(mid)) __ok = mid, dist -= dist / 2; else __ng = mid, dist /= 2; } return __ok; } // binary search on real numbers. template <class pred_type> long double binary(long double __ok, long double __ng, const long double eps, pred_type pred) { assert(__ok != __ng); while(std::abs(__ok - __ng) > eps) { long double mid{(__ok + __ng) / 2}; (pred(mid) ? __ok : __ng) = mid; } return __ok; } // trinary search on discrete range. template <class iter_type, class comp_type> iter_type trinary(iter_type __first, iter_type __last, comp_type comp) { assert(__first < __last); std::ptrdiff_t dist(__last - __first); while(dist > 2) { iter_type __left(__first + dist / 3), __right(__first + dist * 2 / 3); if(comp(__left, __right)) __last = __right, dist = dist * 2 / 3; else __first = __left, dist -= dist / 3; } if(dist > 1 && comp(next(__first), __first)) ++__first; return __first; } // trinary search on real numbers. template <class comp_type> long double trinary(long double __first, long double __last, const long double eps, comp_type comp) { assert(__first < __last); while(__last - __first > eps) { long double __left{(__first * 2 + __last) / 3}, __right{(__first + __last * 2) / 3}; if(comp(__left, __right)) __last = __right; else __first = __left; } return __first; } // size of array. template <class A, size_t N> size_t size(A (&array)[N]) { return N; } // be careful that val is type-sensitive. template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); } #pragma endregion #pragma region alias using namespace std; using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t; using p32 = pair<i32, i32>; using p64 = pair<i64, i64>; template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>; template <class T> using hashset = unordered_set<T>; template <class Key, class Value> using hashmap = unordered_map<Key, Value>; using namespace __gnu_cxx; #pragma endregion #pragma region library #include <cassert> #include <iterator> template <class monoid> class deque_aggregation { struct data { monoid value, acc; }; template <bool left_operand_added> struct stack_aggregation : public std::vector<data> { using base = std::vector<data>; bool top_referred = false; void recalc() { if(top_referred) { assert(!empty()); top_referred = false; monoid top_val{top().value}; pop(); push(top_val); } } // copy of the element at the index. data operator[](size_t index) const { assert(index < size()); recalc(); return base::operator[](index); } // reference to the last element data &top() { assert(!empty()); top_referred = true; return back(); } void pop() { assert(!empty()); top_referred = false; pop_back(); } void push(const monoid &mono) { recalc(); if(left_operand_added) push_back({mono, mono + fold()}); else push_back({mono, fold() + mono}); } monoid fold() { if(empty()) return monoid(); recalc(); return back().acc; } }; // class stack_aggregation stack_aggregation<true> left; stack_aggregation<false> right; void share_right() { if(!left.empty() || right.empty()) return; left.recalc(); right.recalc(); auto mid = right.begin() + (right.size() + 1) / 2; for(auto itr = mid; itr != right.end(); ++itr) left.push(itr->value); right.erase(right.begin(), mid); monoid nacc; for(auto &[value, acc] : right) nacc = acc = nacc + value; } void share_left() { if(!right.empty() || left.empty()) return; left.recalc(); right.recalc(); auto mid = left.begin() + (left.size() + 1) / 2; for(auto itr = mid; itr != left.end(); ++itr) right.push(itr->value); left.erase(left.begin(), mid); monoid nacc; for(auto &[value, acc] : left) nacc = acc = nacc + value; } public: bool empty() const { return left.empty() && right.empty(); } size_t size() const { return left.size() + right.size(); } // reference to the first element. monoid &front() { assert(!empty()); return share_right(), left.top().value; } // reference to the last element. monoid &back() { assert(!empty()); return share_left(), right.top().value; } // copy of the element at the index. monoid operator[](size_t index) const { assert(index < left.size() + right.size()); return index < left.size() ? left[index].value : right[index - left.size()].value; } void push_front(const monoid &mono) { left.push(mono); } void push_back(const monoid &mono) { right.push(mono); } void pop_front() { assert(!empty()); share_right(); left.pop(); } void pop_back() { assert(!empty()); share_left(); right.pop(); } monoid fold() { return left.fold() + right.fold(); } }; // class deque_aggregation #pragma endregion struct solver; template <class> void main_(); int main() { main_<solver>(); } template <class solver> void main_() { unsigned t = 1; #ifdef LOCAL t = 1; #endif // t = -1; // infinite loop // cin >> t; // case number given while(t--) solver(); } struct solver { solver() { int n,k,m; cin>>n>>k>>m; vector<deque<pair<int,i64>>> q1(k+1),q2(k+1); q1[0].emplace_back(0,0); q2[0].emplace_back(0,0); for(i64 s=0,i=0;i<n;i++) { s+=read<int>(); for(int j=k-1; j>=0; j--) { if(!q1[j].empty() and q1[j].front().first==i-m) q1[j].pop_front(); if(!q2[j].empty() and q2[j].front().first==i-m) q2[j].pop_front(); i64 opt=INT64_MIN/2; if(!q1[j].empty()) chmax(opt,q1[j].front().second+s); if(!q2[j].empty()) chmax(opt,q2[j].front().second-s); if(j==k-1 and i==n-1) cout << opt << "\n"; { auto &q=q1[j+1]; auto pu=opt-s; while(!q.empty() and q.back().second<=pu) q.pop_back(); q.emplace_back(i+1,pu); } { auto &q=q2[j+1]; auto pu=opt+s; while(!q.empty() and q.back().second<=pu) q.pop_back(); q.emplace_back(i+1,pu); } } } } };