結果

問題 No.1113 二つの整数 / Two Integers
ユーザー tanimani364tanimani364
提出日時 2020-07-19 01:16:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 1,000 ms
コード長 1,191 bytes
コンパイル時間 2,145 ms
コンパイル使用メモリ 200,072 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-05-08 13:56:32
合計ジャッジ時間 2,694 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define rep(i, a) for (int i = (int)0; i < (int)a; ++i)
#define rrep(i, a) for (int i = (int)a - 1; i >= 0; --i)
#define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i)
#define RREP(i, a, b) for (int i = (int)a - 1; i >= b; --i)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define popcount __builtin_popcount
using ll = long long;
constexpr ll mod = 1e9 + 7;
constexpr ll INF = 1LL << 60;

template <class T>
inline bool chmin(T &a, T b)
{
	if (a > b)
	{
		a = b;
		return true;
	}
	return false;
}
template <class T>
inline bool chmax(T &a, T b)
{
	if (a < b)
	{
		a = b;
		return true;
	}
	return false;
}

ll gcd(ll n, ll m)
{
	ll tmp;
	while (m != 0)
	{
		tmp = n % m;
		n = m;
		m = tmp;
	}
	return n;
}

ll lcm(ll n, ll m)
{
	return abs(n) / gcd(n, m) * abs(m); //gl=xy
}

using namespace std;

void solve()
{
	ll a,b;
	//a=1e18,b=1e18;
  cin>>a>>b;
  ll x=gcd(a,b);
	ll val=sqrt(x);
	//cout<<val*val<<endl;
	if(val*val!=x){
		cout<<"Even\n";
	}
	else cout<<"Odd\n";
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout << fixed << setprecision(15);
	solve();
	return 0;
}
0