結果
問題 | No.977 アリス仕掛けの摩天楼 |
ユーザー | kissshot7 |
提出日時 | 2020-07-19 13:56:59 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 52 ms / 2,000 ms |
コード長 | 6,703 bytes |
コンパイル時間 | 1,810 ms |
コンパイル使用メモリ | 186,428 KB |
実行使用メモリ | 16,304 KB |
最終ジャッジ日時 | 2024-12-16 05:47:03 |
合計ジャッジ時間 | 3,041 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
7,424 KB |
testcase_01 | AC | 5 ms
7,424 KB |
testcase_02 | AC | 4 ms
7,424 KB |
testcase_03 | AC | 4 ms
7,552 KB |
testcase_04 | AC | 4 ms
7,496 KB |
testcase_05 | AC | 4 ms
7,424 KB |
testcase_06 | AC | 4 ms
7,552 KB |
testcase_07 | AC | 4 ms
7,492 KB |
testcase_08 | AC | 5 ms
7,552 KB |
testcase_09 | AC | 4 ms
7,552 KB |
testcase_10 | AC | 4 ms
7,492 KB |
testcase_11 | AC | 4 ms
7,496 KB |
testcase_12 | AC | 4 ms
7,552 KB |
testcase_13 | AC | 9 ms
8,304 KB |
testcase_14 | AC | 7 ms
8,008 KB |
testcase_15 | AC | 8 ms
8,088 KB |
testcase_16 | AC | 9 ms
8,264 KB |
testcase_17 | AC | 9 ms
9,540 KB |
testcase_18 | AC | 16 ms
9,856 KB |
testcase_19 | AC | 21 ms
13,760 KB |
testcase_20 | AC | 21 ms
10,308 KB |
testcase_21 | AC | 36 ms
12,032 KB |
testcase_22 | AC | 45 ms
13,252 KB |
testcase_23 | AC | 41 ms
13,568 KB |
testcase_24 | AC | 52 ms
16,304 KB |
testcase_25 | AC | 42 ms
13,568 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; const ll mod = 1000000007; const ll INF = mod * mod; const int INF_N = 1e+9; typedef pair<int, int> P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i<n;i++) #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair<ll, ll> LP; typedef long double ld; typedef pair<ld, ld> LDP; const ld eps = 1e-12; const ld pi = acos(-1.0); //typedef vector<vector<ll>> mat; typedef vector<int> vec; //繰り返し二乗法 ll mod_pow(ll a, ll n, ll m) { ll res = 1; while (n) { if (n & 1)res = res * a%m; a = a * a%m; n >>= 1; } return res; } struct modint { ll n; modint() :n(0) { ; } modint(ll m) :n(m) { if (n >= mod)n %= mod; else if (n < 0)n = (n%mod + mod) % mod; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } modint operator+=(modint &a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; } modint operator-=(modint &a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; } modint operator*=(modint &a, modint b) { a.n = ((ll)a.n*b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, int n) { if (n == 0)return modint(1); modint res = (a*a) ^ (n / 2); if (n % 2)res = res * a; return res; } //逆元(Eucledean algorithm) ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p%a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } const int max_n = 1 << 18; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } using mP = pair<modint, modint>; int dx[4] = { 0,1,0,-1 }; int dy[4] = { 1,0,-1,0 }; struct uf { vector<int> par; vector<int> sizes; uf(int n) : par(n), sizes(n, 1) { for (int i = 0; i < n; i++) { par[i] = i; } } int find(int x) { return x == par[x] ? x : par[x] = find(par[x]); } void unite(int x, int y) { x = find(x); y = find(y); if (x == y) return; if (sizes[x] < sizes[y]) swap(x, y); par[y] = x; sizes[x] += sizes[y]; } bool same(int x, int y) { return find(x) == find(y); } int get_size(int x) { return sizes[find(x)]; } bool all_same() { bool good = true; for (int i = 0, n = par.size(); i < n; i++) if (find(0) != find(i)) good = false; return good; } int get_connectivity() { set<int> s; for (int i = 0, n = par.size(); i < n; i++) s.insert(find(i)); return s.size(); } }; template<class T> struct Edge { int from, to; T cost; Edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} explicit operator int() const { return to; } }; template<class T> using Edges = vector<Edge<T>>; template<class T> using WeightedGraph = vector<Edges<T>>; using UnWeightedGraph = vector<vector<int>>; template<class T> using DistMatrix = vector<vector<T>>; struct GraphAdapter { template<class T> static UnWeightedGraph to_unweighted_graph(const WeightedGraph<T> &origin) { int V = origin.size(); UnWeightedGraph graph(V); for (int i = 0; i < V; i++) for (auto &e: origin[i]) graph[i].push_back((int) e); return graph; } static WeightedGraph<int> to_weighted_graph(const UnWeightedGraph &origin) { int V = origin.size(); WeightedGraph<int> graph(V); for (int i = 0; i < V; i++) for (auto to: origin[i]) graph[i].push_back({i, to, 1}); return graph; } template<class T> static DistMatrix<T> to_dist_matrix(const WeightedGraph<T> &origin, T INF) { int V = origin.size(); DistMatrix<T> matrix(V, vector<T>(V, INF)); for (int i = 0; i < V; i++) for (auto &e:origin[i]) matrix[i][e.to] = e.cost; for (int i = 0; i < V; i++) matrix[i][i] = 0; return matrix; } }; template<typename G> struct LowLink { const G &g; int k; vector<int> used, ord, low; vector<int> articulations; vector<pair<int, int>> bridges; LowLink(const G &g) : g(g) {} void dfs(int v, int p) { used[v] = 1; ord[v] = low[v] = k++; bool is_art = false; int cnt = 0; for (auto &to: g[v]) { if (!used[to]) { cnt++; dfs(to, v); low[v] = min(low[v], low[to]); is_art |= ~p && ord[v] <= low[to]; if (ord[v] < low[to]) bridges.emplace_back(min(v, (int) to), max(v, (int) to)); } else if (to != p) { low[v] = min(low[v], ord[to]); } } is_art |= p == -1 and cnt > 1; if (is_art) articulations.push_back(v); } void build() { int n = g.size(); used.assign(n, 0); ord.assign(n, 0); low.assign(n, 0); k = 0; for (int i = 0; i < n; i++) { if (!used[i]) { dfs(i, -1); } } } }; void solve() { int N; cin >> N; UnWeightedGraph G(N); uf u(N); rep(i, N-1){ int a, b; cin >> a >> b; u.unite(a, b); G[a].push_back(b); G[b].push_back(a); } int cnt = u.get_connectivity(); if(cnt == 1){ cout << "Bob" << endl; return; }else if(cnt >= 3){ cout << "Alice" << endl; return; } LowLink<UnWeightedGraph> lowLink(G); lowLink.build(); if(lowLink.bridges.size() == 0){ cout << "Bob" << endl; }else{ cout << "Alice" << endl; } } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(10); //init_f(); //init(); //int t; cin >> t; rep(i, t)solve(); solve(); // stop return 0; }