結果
問題 | No.1112 冥界の音楽 |
ユーザー | Chanyuh |
提出日時 | 2020-07-20 17:25:16 |
言語 | C++11 (gcc 11.4.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,717 bytes |
コンパイル時間 | 1,158 ms |
コンパイル使用メモリ | 109,064 KB |
実行使用メモリ | 11,940 KB |
最終ジャッジ日時 | 2024-06-06 12:24:40 |
合計ジャッジ時間 | 9,082 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 24 ms
11,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 128 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 13 ms
6,944 KB |
testcase_10 | AC | 1 ms
6,940 KB |
testcase_11 | AC | 29 ms
6,940 KB |
testcase_12 | AC | 1 ms
6,940 KB |
testcase_13 | AC | 3 ms
6,940 KB |
testcase_14 | AC | 783 ms
6,944 KB |
testcase_15 | AC | 106 ms
6,940 KB |
testcase_16 | AC | 1 ms
6,944 KB |
testcase_17 | AC | 138 ms
6,940 KB |
testcase_18 | AC | 137 ms
6,940 KB |
testcase_19 | AC | 2 ms
6,940 KB |
testcase_20 | AC | 19 ms
6,940 KB |
testcase_21 | AC | 751 ms
6,940 KB |
testcase_22 | AC | 722 ms
6,940 KB |
testcase_23 | AC | 96 ms
6,940 KB |
testcase_24 | AC | 1 ms
6,940 KB |
testcase_25 | AC | 2 ms
6,944 KB |
testcase_26 | AC | 2 ms
6,944 KB |
testcase_27 | AC | 2 ms
6,944 KB |
testcase_28 | AC | 7 ms
6,940 KB |
testcase_29 | AC | 2 ms
6,940 KB |
testcase_30 | AC | 441 ms
6,940 KB |
testcase_31 | AC | 7 ms
6,944 KB |
testcase_32 | AC | 482 ms
6,940 KB |
testcase_33 | AC | 2 ms
6,944 KB |
testcase_34 | AC | 2 ms
6,940 KB |
testcase_35 | AC | 2 ms
6,940 KB |
testcase_36 | TLE | - |
ソースコード
#include<iostream> #include<string> #include<cstdio> #include<vector> #include<cmath> #include<algorithm> #include<functional> #include<iomanip> #include<queue> #include<ciso646> #include<random> #include<map> #include<set> #include<complex> #include<bitset> #include<stack> #include<unordered_map> #include<utility> #include<tuple> using namespace std; typedef long long ll; typedef unsigned int ui; const ll mod = 1000000007; const ll INF = (ll)1000000007 * 1000000007; typedef pair<int, int> P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i<n;i++) #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define Per(i,sta,n) for(int i=n-1;i>=sta;i--) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) typedef long double ld; const ld eps = 1e-8; const ld pi = acos(-1.0); typedef pair<ll, ll> LP; int dx[4]={1,-1,0,0}; int dy[4]={0,0,1,-1}; template<typename T> struct Matrix{ vector<vector<T>> val; Matrix(){} Matrix(int n,int m,T x=0):val(n,vector<T>(m,x)){} Matrix(vector<vector<T>> a):val(a){} size_t size() const {return val.size();} inline vector<T>& operator [] (int i) {return val[i];} Matrix<T> &operator=(const vector<vector<T>> &A) { int n=A.size(),m=A[0].size(); val=A; return *this; } Matrix<T> &operator+=(const Matrix<T> &A) { for (int i=0;i<val.size();++i) for (int j=0;j<val[0].size();++j) val[i][j]=val[i][j]+A.val[i][j]; return *this; } Matrix<T> &operator+=(const vector<vector<T>> &A) { return *this += Matrix(A); } Matrix<T> &operator-=(const Matrix<T> &A) { for (int i=0;i<val.size();++i) for (int j=0;j<val[0].size();++j) val[i][j]=val[i][j]-A.val[i][j]; return *this; } Matrix<T> &operator-=(const vector<vector<T>> &A) { return *this -= Matrix(A); } Matrix<T> &operator*=(const Matrix<T> &A) { Matrix<T> R(val.size(),A.val[0].size()); for (int i = 0; i < val.size(); ++i) for (int j = 0; j < A.val[0].size(); ++j) for (int k = 0; k < A.size(); ++k) R[i][j] = R[i][j] + (val[i][k] * A.val[k][j]); for (int i=0;i<val.size();++i) for (int j=0;j<val[0].size();++j) val[i][j]=R.val[i][j]; return *this; } Matrix<T> &operator*=(const vector<vector<T>> &A) { return *this *= Matrix(A); } Matrix<T> operator+(const Matrix<T> &p) const { return Matrix<T>(*this) += p; } Matrix<T> operator-(const Matrix<T> &p) const { return Matrix<T>(*this) -= p; } Matrix<T> operator*(const Matrix<T> &p) const { return Matrix<T>(*this) *= p; } bool operator==(const Matrix<T> &p) const { return val == p.val; } bool operator!=(const Matrix<T> &p) const { return val != p.val; } Matrix<T> pow(long long n) { Matrix<T> A=*this; Matrix<T> R(A.size(), A.size()); for (int i = 0; i < A.size(); ++i) R[i][i] = 1; while (n > 0) { if (n & 1) R = R * A; A = A * A; n >>= 1; } return R; } }; template<int mod> struct ModInt { long long x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} explicit operator int() const {return x;} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const{ int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } return ModInt(u); } ModInt power(long long p) const{ int a = x; if (p==0) return 1; if (p==1) return ModInt(a); if (p%2==1) return (ModInt(a)*ModInt(a)).power(p/2)*ModInt(a); else return (ModInt(a)*ModInt(a)).power(p/2); } ModInt power(const ModInt p) const{ return ((ModInt)x).power(p.x); } friend ostream &operator<<(ostream &os, const ModInt<mod> &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt<mod> &a) { long long x; is >> x; a = ModInt<mod>(x); return (is); } }; using modint = ModInt<mod>; int k,m;ll n; bool ok[1010]; void solve(){ cin >> k >> m >> n; rep(i,m){ int p,q,r;cin >> p >> q >> r;p--;q--;r--; ok[p*k*k+q*k+r]=true; } Matrix<modint> A(k*k*k,k*k*k),s(k*k*k,1); rep(i,k*k*k){ if(ok[i]) { rep(j,k) A[i][i/k+j*k*k]=1; if(i/(k*k)==0) s[i][0]=1; } } Matrix<modint> v=A.pow(n-3)*s; modint ans=0; //rep(i,k*k*k) cout << i/(k*k) << " " << ((i-i%k)%(k*k))/k << " " << i%k << " " << v[i][0] << endl; rep(i,k*k*k){ if(i%k==0)ans+=v[i][0]; } cout << ans << endl; } int main(){ ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(50); solve(); }