結果
| 問題 |
No.1112 冥界の音楽
|
| コンテスト | |
| ユーザー |
Chanyuh
|
| 提出日時 | 2020-07-20 17:25:16 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,717 bytes |
| コンパイル時間 | 1,072 ms |
| コンパイル使用メモリ | 108,472 KB |
| 実行使用メモリ | 10,496 KB |
| 最終ジャッジ日時 | 2024-12-24 04:03:52 |
| 合計ジャッジ時間 | 9,362 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 33 TLE * 1 |
ソースコード
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<complex>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<tuple>
using namespace std;
typedef long long ll;
typedef unsigned int ui;
const ll mod = 1000000007;
const ll INF = (ll)1000000007 * 1000000007;
typedef pair<int, int> P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
typedef long double ld;
const ld eps = 1e-8;
const ld pi = acos(-1.0);
typedef pair<ll, ll> LP;
int dx[4]={1,-1,0,0};
int dy[4]={0,0,1,-1};
template<typename T>
struct Matrix{
vector<vector<T>> val;
Matrix(){}
Matrix(int n,int m,T x=0):val(n,vector<T>(m,x)){}
Matrix(vector<vector<T>> a):val(a){}
size_t size() const {return val.size();}
inline vector<T>& operator [] (int i) {return val[i];}
Matrix<T> &operator=(const vector<vector<T>> &A) {
int n=A.size(),m=A[0].size();
val=A;
return *this;
}
Matrix<T> &operator+=(const Matrix<T> &A) {
for (int i=0;i<val.size();++i)
for (int j=0;j<val[0].size();++j)
val[i][j]=val[i][j]+A.val[i][j];
return *this;
}
Matrix<T> &operator+=(const vector<vector<T>> &A) { return *this += Matrix(A); }
Matrix<T> &operator-=(const Matrix<T> &A) {
for (int i=0;i<val.size();++i)
for (int j=0;j<val[0].size();++j)
val[i][j]=val[i][j]-A.val[i][j];
return *this;
}
Matrix<T> &operator-=(const vector<vector<T>> &A) { return *this -= Matrix(A); }
Matrix<T> &operator*=(const Matrix<T> &A) {
Matrix<T> R(val.size(),A.val[0].size());
for (int i = 0; i < val.size(); ++i)
for (int j = 0; j < A.val[0].size(); ++j)
for (int k = 0; k < A.size(); ++k)
R[i][j] = R[i][j] + (val[i][k] * A.val[k][j]);
for (int i=0;i<val.size();++i)
for (int j=0;j<val[0].size();++j)
val[i][j]=R.val[i][j];
return *this;
}
Matrix<T> &operator*=(const vector<vector<T>> &A) { return *this *= Matrix(A); }
Matrix<T> operator+(const Matrix<T> &p) const { return Matrix<T>(*this) += p; }
Matrix<T> operator-(const Matrix<T> &p) const { return Matrix<T>(*this) -= p; }
Matrix<T> operator*(const Matrix<T> &p) const { return Matrix<T>(*this) *= p; }
bool operator==(const Matrix<T> &p) const { return val == p.val; }
bool operator!=(const Matrix<T> &p) const { return val != p.val; }
Matrix<T> pow(long long n) {
Matrix<T> A=*this;
Matrix<T> R(A.size(), A.size());
for (int i = 0; i < A.size(); ++i) R[i][i] = 1;
while (n > 0) {
if (n & 1) R = R * A;
A = A * A;
n >>= 1;
}
return R;
}
};
template<int mod>
struct ModInt {
long long x;
ModInt() : x(0) {}
ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
explicit operator int() const {return x;}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const{
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
return ModInt(u);
}
ModInt power(long long p) const{
int a = x;
if (p==0) return 1;
if (p==1) return ModInt(a);
if (p%2==1) return (ModInt(a)*ModInt(a)).power(p/2)*ModInt(a);
else return (ModInt(a)*ModInt(a)).power(p/2);
}
ModInt power(const ModInt p) const{
return ((ModInt)x).power(p.x);
}
friend ostream &operator<<(ostream &os, const ModInt<mod> &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt<mod> &a) {
long long x;
is >> x;
a = ModInt<mod>(x);
return (is);
}
};
using modint = ModInt<mod>;
int k,m;ll n;
bool ok[1010];
void solve(){
cin >> k >> m >> n;
rep(i,m){
int p,q,r;cin >> p >> q >> r;p--;q--;r--;
ok[p*k*k+q*k+r]=true;
}
Matrix<modint> A(k*k*k,k*k*k),s(k*k*k,1);
rep(i,k*k*k){
if(ok[i]) {
rep(j,k) A[i][i/k+j*k*k]=1;
if(i/(k*k)==0) s[i][0]=1;
}
}
Matrix<modint> v=A.pow(n-3)*s;
modint ans=0;
//rep(i,k*k*k) cout << i/(k*k) << " " << ((i-i%k)%(k*k))/k << " " << i%k << " " << v[i][0] << endl;
rep(i,k*k*k){
if(i%k==0)ans+=v[i][0];
}
cout << ans << endl;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(50);
solve();
}
Chanyuh