結果

問題 No.875 Range Mindex Query
ユーザー jelljell
提出日時 2020-07-21 22:52:34
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 192 ms / 2,000 ms
コード長 15,914 bytes
コンパイル時間 4,031 ms
コンパイル使用メモリ 219,952 KB
実行使用メモリ 7,228 KB
最終ジャッジ日時 2023-08-30 04:13:29
合計ジャッジ時間 6,536 ms
ジャッジサーバーID
(参考情報)
judge15 / judge11
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
4,380 KB
testcase_01 AC 2 ms
4,376 KB
testcase_02 AC 3 ms
4,376 KB
testcase_03 AC 2 ms
4,376 KB
testcase_04 AC 2 ms
4,380 KB
testcase_05 AC 2 ms
4,380 KB
testcase_06 AC 2 ms
4,376 KB
testcase_07 AC 2 ms
4,376 KB
testcase_08 AC 2 ms
4,380 KB
testcase_09 AC 3 ms
4,376 KB
testcase_10 AC 3 ms
4,380 KB
testcase_11 AC 129 ms
6,472 KB
testcase_12 AC 106 ms
5,152 KB
testcase_13 AC 88 ms
6,840 KB
testcase_14 AC 88 ms
6,844 KB
testcase_15 AC 120 ms
6,740 KB
testcase_16 AC 177 ms
7,048 KB
testcase_17 AC 192 ms
7,092 KB
testcase_18 AC 183 ms
7,228 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma region preprocessor
#ifdef LOCAL
//*
    #define _GLIBCXX_DEBUG  // gcc
/*/
    #define _LIBCPP_DEBUG 0 // clang
//*/
    // #define __buffer_check__
#else
    #pragma GCC optimize("Ofast")
    // #define NDEBUG
#endif
#define __precision__ 15
#define __iostream_untie__ true
#include <bits/stdc++.h>
#include <ext/rope>

#ifdef LOCAL
    #include "dump.hpp"
    #define mesg(str) std::cerr << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]  " << str << "\n"
#else
    #define dump(...) ((void)0)
    #define mesg(str) ((void)0)
#endif
#pragma endregion

#pragma region std-overload
namespace std
{
    // hash
    template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
    template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
    template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
    template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
    template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
    // iostream
    template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
    template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
    template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
    template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
    template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
    template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
    template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
    template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
    template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
    template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std
#pragma endregion

#pragma region config
namespace config
{
    const auto start_time{std::chrono::system_clock::now()};
    int64_t elapsed()
    {
        using namespace std::chrono;
        const auto end_time{std::chrono::system_clock::now()};
        return duration_cast<milliseconds>(end_time - start_time).count();
    }
    __attribute__((constructor)) void setup()
    {
        using namespace std;
        if(__iostream_untie__) ios::sync_with_stdio(false), cin.tie(nullptr);
                cout << fixed << setprecision(__precision__);
        #ifdef DEBUG
                freopen("debug.out","w",stdout);
                freopen("debug.err","w",stderr);
                if(!freopen("debug.in","r",stdin))
                {
                    cerr << "error: \"./debug.in\" not found.\n";
                    exit(EXIT_FAILURE);
                }
        #endif
        #ifdef stderr_path
                freopen(stderr_path, "a", stderr);
        #endif
        #ifdef LOCAL
                cerr << fixed << setprecision(__precision__) << boolalpha << "\n----- stderr at LOCAL -----\n\n";
                atexit([]{ cerr << "\n----- Exec time : " << elapsed() << " ms -----\n\n"; });
        #endif
        #ifdef __buffer_check__
                atexit([]{ ofstream cnsl("CON"); char bufc; if(cin >> bufc) cnsl << "\n\033[1;35mwarning\033[0m: buffer not empty.\n\n"; });
        #endif
    }
} // namespace config
#pragma endregion

#pragma region utility
// lambda wrapper for recursive method.
template <class lambda_type>
class fixed_point
{
    lambda_type func;
public:
    fixed_point(lambda_type &&f) : func(std::move(f)) {}
    template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); }
};
// read with std::cin.
template <class T = void>
struct read
{
    typename std::remove_const<T>::type value;
    template <class... types>
    read(types... args) : value(args...) { std::cin >> value; }
    operator T() const { return value; }
};
template <>
struct read<void>
{
    template <class T>
    operator T() const { T value; std::cin >> value; return value; }
};
// substitute y for x if x > y.
template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
    assert(__ok != __ng);
    std::ptrdiff_t dist(__ng - __ok);
    while(std::abs(dist) > 1)
    {
        iter_type mid(__ok + dist / 2);
        if(pred(mid)) __ok = mid, dist -= dist / 2;
        else __ng = mid, dist /= 2;
    }
    return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
    assert(__ok != __ng);
    while(std::abs(__ok - __ng) > eps)
    {
        long double mid{(__ok + __ng) / 2};
        (pred(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}
// trinary search on discrete range.
template <class iter_type, class comp_type>
iter_type trinary(iter_type __first, iter_type __last, comp_type comp)
{
    assert(__first < __last);
    std::ptrdiff_t dist(__last - __first);
    while(dist > 2)
    {
        iter_type __left(__first + dist / 3), __right(__first + dist * 2 / 3);
        if(comp(__left, __right)) __last = __right, dist = dist * 2 / 3;
        else __first = __left, dist -= dist / 3;
    }
    if(dist > 1 && comp(next(__first), __first)) ++__first;
    return __first;
}
// trinary search on real numbers.
template <class comp_type>
long double trinary(long double __first, long double __last, const long double eps, comp_type comp)
{
    assert(__first < __last);
    while(__last - __first > eps)
    {
        long double __left{(__first * 2 + __last) / 3}, __right{(__first + __last * 2) / 3};
        if(comp(__left, __right)) __last = __right;
        else __first = __left;
    }
    return __first;
}
// size of array.
template <class A, size_t N> size_t size(A (&array)[N]) { return N; }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
#pragma endregion

#pragma region alias
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using p32 = pair<i32, i32>; using p64 = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
using namespace __gnu_cxx;
#pragma endregion

#pragma region library



#pragma endregion

struct solver; template <class> void main_(); int main() { main_<solver>(); }
template <class solver> void main_()
{
    unsigned t = 1;
#ifdef LOCAL
    t = 1;
#endif
    // t = -1; // infinite loop
    // cin >> t; // case number given

    while(t--) solver();
}

#include <random>

template <typename num_t>
class random_number_generator
{
    template <bool is_int, class = void>
    struct unif_t
    {
        std::uniform_int_distribution<num_t> unif;
        unif_t(num_t lower, num_t upper) : unif(lower, upper) {}
        num_t operator()(std::mt19937 &engine) { return unif(engine); }
    };
    template <class void_t>
    struct unif_t<false, void_t>
    {
        std::uniform_real_distribution<num_t> unif;
        unif_t(num_t lower, num_t upper) : unif(lower, upper) {}
        num_t operator()(std::mt19937 &engine) { return unif(engine); }
    };
    unif_t<std::is_integral<num_t>::value> unif;
    std::mt19937 engine;
public:
    // generate random number in [lower, upper].
    random_number_generator(num_t lower = std::numeric_limits<num_t>::min(), num_t upper = std::numeric_limits<num_t>::max()) : unif(lower, upper), engine(std::random_device{}()) {}
    num_t operator()() { return unif(engine); }
}; // class random_number_generator

#include <cassert>
#include <vector>

template <class monoid>
class segment_tree
{
    using size_type = typename std::vector<monoid>::size_type;

    class unique_queue
    {
        size_type *que, *begin, *end;
        bool *in;

    public:
        unique_queue() : que(), begin(), end(), in() {}
        unique_queue(size_type n) : que(new size_type[n]), begin(que), end(que), in(new bool[n]{}) {}
        ~unique_queue() { delete[] que; delete[] in; }

        void clear() { begin = end = que; }
        bool empty() const { return begin == end; }
        bool push(size_type index)
        {
            if(in[index]) return false;
            return in[*end++ = index] = true;
        }
        size_type pop() { return in[*begin] = false, *begin++; }
    }; // struct unique_queue

    size_type size_orig, height, size_ext;
    std::vector<monoid> data;
    unique_queue que;

    void recalc(const size_type node) { data[node] = data[node << 1] + data[node << 1 | 1]; }

    void rebuild()
    {
        while(!que.empty())
        {
            const size_type index = que.pop() >> 1;
            if(index && que.push(index)) recalc(index);
        }
        que.clear();
    }

    template <class pred_type>
    size_type left_search_subtree(size_type index, const pred_type pred, monoid mono) const
    {
        assert(index);
        while(index < size_ext)
        {
            const monoid tmp = data[(index <<= 1) | 1] + mono;
            if(pred(tmp)) mono = tmp;
            else ++index;
        }
        return ++index -= size_ext;
    }

    template <class pred_type>
    size_type right_search_subtree(size_type index, const pred_type pred, monoid mono) const
    {
        assert(index);
        while(index < size_ext)
        {
            const monoid tmp = mono + data[index <<= 1];
            if(pred(tmp)) ++index, mono = tmp;
        }
        return (index -= size_ext) < size_orig ? index : size_orig;
    }

public:
    segment_tree(const size_type n = 0) : size_orig{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), size_ext{1u << height}, data(size_ext << 1), que(size_ext << 1) {}

    segment_tree(const size_type n, const monoid &init) : segment_tree(n)
    {
        std::fill(std::next(std::begin(data), size_ext), std::end(data), init);
        for(size_type i{size_ext}; --i; ) recalc(i);
    }

    template <class iter_type, class value_type = typename std::iterator_traits<iter_type>::value_type>
    segment_tree(iter_type first, iter_type last)
        : size_orig(std::distance(first, last)), height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0), size_ext{1u << height}, data(size_ext << 1), que(size_ext << 1)
    {
        static_assert(std::is_constructible<monoid, value_type>::value, "monoid(iter_type::value_type) is not constructible.");
        for(auto iter{std::next(std::begin(data), size_ext)}; iter != std::end(data) && first != last; ++iter, ++first) *iter = monoid{*first};
        for(size_type i{size_ext}; --i; ) recalc(i);
    }

    template <class container_type, typename = typename container_type::value_type>
    segment_tree(const container_type &cont) : segment_tree(std::begin(cont), std::end(cont)) {}

    size_type size() const { return size_orig; }
    size_type capacity() const { return size_ext; }

    // reference to the element at the index.
    typename decltype(data)::reference operator[](size_type index)
    {
        assert(index < size_orig);
        que.push(index |= size_ext);
        return data[index];
    }

    // const reference to the element at the index.
    typename decltype(data)::const_reference operator[](size_type index) const
    {
        assert(index < size_orig);
        return data[index |= size_orig];
    }

    monoid fold(size_type first, size_type last)
    {
        assert(last <= size_orig);
        rebuild();
        monoid leftval{}, rightval{};
        first += size_ext, last += size_ext;
        while(first < last)
        {
            if(first & 1) leftval = leftval + data[first++];
            if(last & 1) rightval = data[--last] + rightval;
            first >>= 1, last >>= 1;
        }
        return leftval + rightval;
    }

    monoid fold() { return fold(0, size_orig); }

    template <class pred_type>
    size_type left_search(size_type right, const pred_type pred)
    {
        assert(right <= size_orig);
        rebuild();
        right += size_ext;
        monoid mono{};
        for(size_type left{size_ext}; left != right; left >>= 1, right >>= 1)
        {
            if((left & 1) != (right & 1))
            {
                const monoid tmp = data[--right] + mono;
                if(!pred(tmp)) return left_search_subtree(right, pred, mono);
                mono = tmp;
            }
        }
        return 0;
    }

    template <class pred_type>
    size_type right_search(size_type left, const pred_type pred)
    {
        assert(left <= size_orig);
        rebuild();
        left += size_ext;
        monoid mono{};
        for(size_type right{size_ext << 1}; left != right; left >>= 1, right >>= 1)
        {
            if((left & 1) != (right & 1))
            {
                const monoid tmp = mono + data[left];
                if(!pred(tmp)) return right_search_subtree(left, pred, mono);
                mono = tmp;
                ++left;
            }
        }
        return size_orig;
    }
}; // class segment_tree

struct solver
{

    solver()
    {
        struct mono
        {
            int val,id;
            mono(int v=INT_MAX,int id=-1): val(v),id(id) {}
            mono operator+(const mono& rhs) const
            {
                if(val<rhs.val) return *this;
                return rhs;
            }
        };
        const int n=read(),q=read();
        segment_tree<mono> seg(n);
        for(int i=0; i<n; i++)
        {
            seg[i]={read(),i+1};
        }
        for(int t=0; t<q; t++)
        {
            const int typ=read();
            const int l=read();
            const int r=read();
            if(typ==1)
            {
                swap(seg[l-1].val,seg[r-1].val);
            }
            else
            {
                cout<<seg.fold(l-1,r).id<<endl;
            }
        }
    }
};
0