結果
| 問題 |
No.875 Range Mindex Query
|
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2020-07-21 22:52:34 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 15,914 bytes |
| コンパイル時間 | 2,344 ms |
| コンパイル使用メモリ | 213,076 KB |
| 最終ジャッジ日時 | 2025-01-12 01:43:45 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp:104:8: error: ‘template<class T> struct read’ redeclared as different kind of entity
104 | struct read
| ^~~~
In file included from /usr/include/unistd.h:1217,
from /usr/include/x86_64-linux-gnu/bits/sigstksz.h:24,
from /usr/include/signal.h:328,
from /usr/include/c++/13/csignal:42,
from /usr/include/x86_64-linux-gnu/c++/13/bits/stdc++.h:116,
from main.cpp:15:
/usr/include/x86_64-linux-gnu/bits/unistd.h:26:1: note: previous declaration ‘ssize_t read(int, void*, size_t)’
26 | read (int __fd, void *__buf, size_t __nbytes)
| ^~~~
main.cpp:112:8: error: ‘read’ is not a class template
112 | struct read<void>
| ^~~~
main.cpp:113:1: error: explicit specialization of non-template ‘read’
113 | {
| ^
main.cpp: In constructor ‘solver::solver()’:
main.cpp:417:25: error: too few arguments to function ‘ssize_t read(int, void*, size_t)’
417 | const int n=read(),q=read();
| ~~~~^~
/usr/include/x86_64-linux-gnu/bits/unistd.h:26:1: note: declared here
26 | read (int __fd, void *__buf, size_t __nbytes)
| ^~~~
main.cpp:421:25: error: too few arguments to function ‘ssize_t read(int, void*, size_t)’
421 | seg[i]={read(),i+1};
| ~~~~^~
/usr/include/x86_64-linux-gnu/bits/unistd.h:26:1: note: declared here
26 | read (int __fd, void *__buf, size_t __nbytes)
| ^~~~
main.cpp:421:31: error: no match for ‘operator=’ (operand types are ‘__gnu_cxx::__alloc_traits<std::allocator<solver::solver()::mono>, solver::solver()::mono>::value_type’ {aka ‘solver::solver()::mono’} and ‘<brace-enclosed initializer list>’)
421 | seg[i]={read(),i+1};
| ^
main.cpp:407:16: note: candidate: ‘constexpr solver::solver()::mono& solver::solver()::mono::operator=(const solver::solver()::mono&)��
ソースコード
#pragma region preprocessor
#ifdef LOCAL
//*
#define _GLIBCXX_DEBUG // gcc
/*/
#define _LIBCPP_DEBUG 0 // clang
//*/
// #define __buffer_check__
#else
#pragma GCC optimize("Ofast")
// #define NDEBUG
#endif
#define __precision__ 15
#define __iostream_untie__ true
#include <bits/stdc++.h>
#include <ext/rope>
#ifdef LOCAL
#include "dump.hpp"
#define mesg(str) std::cerr << "[ " << __LINE__ << " : " << __FUNCTION__ << " ] " << str << "\n"
#else
#define dump(...) ((void)0)
#define mesg(str) ((void)0)
#endif
#pragma endregion
#pragma region std-overload
namespace std
{
// hash
template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
// iostream
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std
#pragma endregion
#pragma region config
namespace config
{
const auto start_time{std::chrono::system_clock::now()};
int64_t elapsed()
{
using namespace std::chrono;
const auto end_time{std::chrono::system_clock::now()};
return duration_cast<milliseconds>(end_time - start_time).count();
}
__attribute__((constructor)) void setup()
{
using namespace std;
if(__iostream_untie__) ios::sync_with_stdio(false), cin.tie(nullptr);
cout << fixed << setprecision(__precision__);
#ifdef DEBUG
freopen("debug.out","w",stdout);
freopen("debug.err","w",stderr);
if(!freopen("debug.in","r",stdin))
{
cerr << "error: \"./debug.in\" not found.\n";
exit(EXIT_FAILURE);
}
#endif
#ifdef stderr_path
freopen(stderr_path, "a", stderr);
#endif
#ifdef LOCAL
cerr << fixed << setprecision(__precision__) << boolalpha << "\n----- stderr at LOCAL -----\n\n";
atexit([]{ cerr << "\n----- Exec time : " << elapsed() << " ms -----\n\n"; });
#endif
#ifdef __buffer_check__
atexit([]{ ofstream cnsl("CON"); char bufc; if(cin >> bufc) cnsl << "\n\033[1;35mwarning\033[0m: buffer not empty.\n\n"; });
#endif
}
} // namespace config
#pragma endregion
#pragma region utility
// lambda wrapper for recursive method.
template <class lambda_type>
class fixed_point
{
lambda_type func;
public:
fixed_point(lambda_type &&f) : func(std::move(f)) {}
template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); }
};
// read with std::cin.
template <class T = void>
struct read
{
typename std::remove_const<T>::type value;
template <class... types>
read(types... args) : value(args...) { std::cin >> value; }
operator T() const { return value; }
};
template <>
struct read<void>
{
template <class T>
operator T() const { T value; std::cin >> value; return value; }
};
// substitute y for x if x > y.
template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
assert(__ok != __ng);
std::ptrdiff_t dist(__ng - __ok);
while(std::abs(dist) > 1)
{
iter_type mid(__ok + dist / 2);
if(pred(mid)) __ok = mid, dist -= dist / 2;
else __ng = mid, dist /= 2;
}
return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
assert(__ok != __ng);
while(std::abs(__ok - __ng) > eps)
{
long double mid{(__ok + __ng) / 2};
(pred(mid) ? __ok : __ng) = mid;
}
return __ok;
}
// trinary search on discrete range.
template <class iter_type, class comp_type>
iter_type trinary(iter_type __first, iter_type __last, comp_type comp)
{
assert(__first < __last);
std::ptrdiff_t dist(__last - __first);
while(dist > 2)
{
iter_type __left(__first + dist / 3), __right(__first + dist * 2 / 3);
if(comp(__left, __right)) __last = __right, dist = dist * 2 / 3;
else __first = __left, dist -= dist / 3;
}
if(dist > 1 && comp(next(__first), __first)) ++__first;
return __first;
}
// trinary search on real numbers.
template <class comp_type>
long double trinary(long double __first, long double __last, const long double eps, comp_type comp)
{
assert(__first < __last);
while(__last - __first > eps)
{
long double __left{(__first * 2 + __last) / 3}, __right{(__first + __last * 2) / 3};
if(comp(__left, __right)) __last = __right;
else __first = __left;
}
return __first;
}
// size of array.
template <class A, size_t N> size_t size(A (&array)[N]) { return N; }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
#pragma endregion
#pragma region alias
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using p32 = pair<i32, i32>; using p64 = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
using namespace __gnu_cxx;
#pragma endregion
#pragma region library
#pragma endregion
struct solver; template <class> void main_(); int main() { main_<solver>(); }
template <class solver> void main_()
{
unsigned t = 1;
#ifdef LOCAL
t = 1;
#endif
// t = -1; // infinite loop
// cin >> t; // case number given
while(t--) solver();
}
#include <random>
template <typename num_t>
class random_number_generator
{
template <bool is_int, class = void>
struct unif_t
{
std::uniform_int_distribution<num_t> unif;
unif_t(num_t lower, num_t upper) : unif(lower, upper) {}
num_t operator()(std::mt19937 &engine) { return unif(engine); }
};
template <class void_t>
struct unif_t<false, void_t>
{
std::uniform_real_distribution<num_t> unif;
unif_t(num_t lower, num_t upper) : unif(lower, upper) {}
num_t operator()(std::mt19937 &engine) { return unif(engine); }
};
unif_t<std::is_integral<num_t>::value> unif;
std::mt19937 engine;
public:
// generate random number in [lower, upper].
random_number_generator(num_t lower = std::numeric_limits<num_t>::min(), num_t upper = std::numeric_limits<num_t>::max()) : unif(lower, upper), engine(std::random_device{}()) {}
num_t operator()() { return unif(engine); }
}; // class random_number_generator
#include <cassert>
#include <vector>
template <class monoid>
class segment_tree
{
using size_type = typename std::vector<monoid>::size_type;
class unique_queue
{
size_type *que, *begin, *end;
bool *in;
public:
unique_queue() : que(), begin(), end(), in() {}
unique_queue(size_type n) : que(new size_type[n]), begin(que), end(que), in(new bool[n]{}) {}
~unique_queue() { delete[] que; delete[] in; }
void clear() { begin = end = que; }
bool empty() const { return begin == end; }
bool push(size_type index)
{
if(in[index]) return false;
return in[*end++ = index] = true;
}
size_type pop() { return in[*begin] = false, *begin++; }
}; // struct unique_queue
size_type size_orig, height, size_ext;
std::vector<monoid> data;
unique_queue que;
void recalc(const size_type node) { data[node] = data[node << 1] + data[node << 1 | 1]; }
void rebuild()
{
while(!que.empty())
{
const size_type index = que.pop() >> 1;
if(index && que.push(index)) recalc(index);
}
que.clear();
}
template <class pred_type>
size_type left_search_subtree(size_type index, const pred_type pred, monoid mono) const
{
assert(index);
while(index < size_ext)
{
const monoid tmp = data[(index <<= 1) | 1] + mono;
if(pred(tmp)) mono = tmp;
else ++index;
}
return ++index -= size_ext;
}
template <class pred_type>
size_type right_search_subtree(size_type index, const pred_type pred, monoid mono) const
{
assert(index);
while(index < size_ext)
{
const monoid tmp = mono + data[index <<= 1];
if(pred(tmp)) ++index, mono = tmp;
}
return (index -= size_ext) < size_orig ? index : size_orig;
}
public:
segment_tree(const size_type n = 0) : size_orig{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), size_ext{1u << height}, data(size_ext << 1), que(size_ext << 1) {}
segment_tree(const size_type n, const monoid &init) : segment_tree(n)
{
std::fill(std::next(std::begin(data), size_ext), std::end(data), init);
for(size_type i{size_ext}; --i; ) recalc(i);
}
template <class iter_type, class value_type = typename std::iterator_traits<iter_type>::value_type>
segment_tree(iter_type first, iter_type last)
: size_orig(std::distance(first, last)), height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0), size_ext{1u << height}, data(size_ext << 1), que(size_ext << 1)
{
static_assert(std::is_constructible<monoid, value_type>::value, "monoid(iter_type::value_type) is not constructible.");
for(auto iter{std::next(std::begin(data), size_ext)}; iter != std::end(data) && first != last; ++iter, ++first) *iter = monoid{*first};
for(size_type i{size_ext}; --i; ) recalc(i);
}
template <class container_type, typename = typename container_type::value_type>
segment_tree(const container_type &cont) : segment_tree(std::begin(cont), std::end(cont)) {}
size_type size() const { return size_orig; }
size_type capacity() const { return size_ext; }
// reference to the element at the index.
typename decltype(data)::reference operator[](size_type index)
{
assert(index < size_orig);
que.push(index |= size_ext);
return data[index];
}
// const reference to the element at the index.
typename decltype(data)::const_reference operator[](size_type index) const
{
assert(index < size_orig);
return data[index |= size_orig];
}
monoid fold(size_type first, size_type last)
{
assert(last <= size_orig);
rebuild();
monoid leftval{}, rightval{};
first += size_ext, last += size_ext;
while(first < last)
{
if(first & 1) leftval = leftval + data[first++];
if(last & 1) rightval = data[--last] + rightval;
first >>= 1, last >>= 1;
}
return leftval + rightval;
}
monoid fold() { return fold(0, size_orig); }
template <class pred_type>
size_type left_search(size_type right, const pred_type pred)
{
assert(right <= size_orig);
rebuild();
right += size_ext;
monoid mono{};
for(size_type left{size_ext}; left != right; left >>= 1, right >>= 1)
{
if((left & 1) != (right & 1))
{
const monoid tmp = data[--right] + mono;
if(!pred(tmp)) return left_search_subtree(right, pred, mono);
mono = tmp;
}
}
return 0;
}
template <class pred_type>
size_type right_search(size_type left, const pred_type pred)
{
assert(left <= size_orig);
rebuild();
left += size_ext;
monoid mono{};
for(size_type right{size_ext << 1}; left != right; left >>= 1, right >>= 1)
{
if((left & 1) != (right & 1))
{
const monoid tmp = mono + data[left];
if(!pred(tmp)) return right_search_subtree(left, pred, mono);
mono = tmp;
++left;
}
}
return size_orig;
}
}; // class segment_tree
struct solver
{
solver()
{
struct mono
{
int val,id;
mono(int v=INT_MAX,int id=-1): val(v),id(id) {}
mono operator+(const mono& rhs) const
{
if(val<rhs.val) return *this;
return rhs;
}
};
const int n=read(),q=read();
segment_tree<mono> seg(n);
for(int i=0; i<n; i++)
{
seg[i]={read(),i+1};
}
for(int t=0; t<q; t++)
{
const int typ=read();
const int l=read();
const int r=read();
if(typ==1)
{
swap(seg[l-1].val,seg[r-1].val);
}
else
{
cout<<seg.fold(l-1,r).id<<endl;
}
}
}
};
jell