結果
| 問題 |
No.1123 Afforestation
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2020-07-22 22:24:29 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,836 bytes |
| コンパイル時間 | 2,709 ms |
| コンパイル使用メモリ | 217,840 KB |
| 最終ジャッジ日時 | 2025-01-12 03:10:58 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 1 |
| other | AC * 26 WA * 64 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template <typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template <typename V, typename T> void ndfill(V &x, const T &val) { x = val; }
template <typename V, typename T> void ndfill(vector<V> &vec, const T &val) { for (auto &v : vec) ndfill(v, val); }
template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> srtunq(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; }
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
bool muri()
{
puts(":(");
exit(0);
}
// MaxFlow (Dinic algorithm)
template <typename T>
struct MaxFlow
{
struct edge { int to; T cap; int rev; };
std::vector<std::vector<edge>> edges;
std::vector<int> level; // level[i] = distance between vertex S and i (Default: -1)
std::vector<int> iter; // iteration counter, used for Dinic's DFS
std::vector<int> used; // Used for Ford-Fulkerson's Algorithm
void bfs(int s)
{
level.assign(edges.size(), -1);
std::queue<int> q;
level[s] = 0;
q.push(s);
while (!q.empty()) {
int v = q.front();
q.pop();
for (edge &e : edges[v]) {
if (e.cap > 0 and level[e.to] < 0) {
level[e.to] = level[v] + 1;
q.push(e.to);
}
}
}
}
T dfs_dinic(int v, int goal, T f)
{
if (v == goal) return f;
for (int &i = iter[v]; i < (int)edges[v].size(); i++) {
edge &e = edges[v][i];
if (e.cap > 0 and level[v] < level[e.to]) {
T d = dfs_dinic(e.to, goal, std::min(f, e.cap));
if (d > 0) {
e.cap -= d;
edges[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
T dfs_ff(int v, int goal, T f)
{
if (v == goal) return f;
used[v] = true;
for (edge &e : edges[v]) {
if (e.cap > 0 && !used[e.to]) {
T d = dfs_ff(e.to, goal, std::min(f, e.cap));
if (d > 0) {
e.cap -= d;
edges[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
public:
MaxFlow(int N) { edges.resize(N); }
void add_edge(int from, int to, T capacity)
{
edges[from].push_back(edge{to, capacity, (int)edges[to].size()});
edges[to].push_back(edge{from, (T)0, (int)edges[from].size() - 1});
}
// Dinic algorithm
// Complexity: O(VE)
T Dinic(int s, int t)
{
constexpr T INF = std::numeric_limits<T>::max();
T flow = 0;
while (true) {
bfs(s);
if (level[t] < 0) return flow;
iter.assign(edges.size(), 0);
T f;
while ((f = dfs_dinic(s, t, INF)) > 0) flow += f;
}
}
// Ford-Fulkerson algorithm
// Complexity: O(EF)
T FF(int s, int t)
{
constexpr T INF = std::numeric_limits<T>::max();
T flow = 0;
while (true) {
used.assign(edges.size(), 0);
T f = dfs_ff(s, t, INF);
if (f == 0) return flow;
flow += f;
}
}
void back_flow(int s, int t, int s_e, int t_e, T capacity_reduce)
{
int i;
for (i=0; edges[s_e][i].to != t_e; ) i++;
edge &e = edges[s_e][i];
if (capacity_reduce <= e.cap) {
e.cap -= capacity_reduce;
}
else {
T flow = capacity_reduce - e.cap;
e.cap = 0;
edges[e.to][e.rev].cap -= flow;
T f_sum = 0;
while (f_sum != flow) {
used.assign(edges.size(), 0);
f_sum += dfs_ff(t, t_e, flow - f_sum);
}
f_sum = 0;
while (f_sum != flow) {
used.assign(edges.size(), 0);
f_sum += dfs_ff(s_e, s, flow - f_sum);
}
}
}
};
int main()
{
int H, W;
cin >> H >> W;
vector<int> A(H), B(W);
cin >> A >> B;
int K;
cin >> K;
vector<int> X(K), Y(K);
vector<vector<int>> bad(H, vector<int>(W));
REP(i, K)
{
cin >> X[i] >> Y[i];
X[i]--, Y[i]--;
bad[X[i]][Y[i]] = 1;
}
vector<int> xu = srtunq(X), yu = srtunq(Y);
int P = xu.size(), Q = yu.size();
int atot = accumulate(ALL(A), 0), btot = accumulate(ALL(B), 0);
if (atot != btot) muri();
int allflow = atot;
int T = 1 + P + 1 + Q + 1;
MaxFlow<int> flow(T + 1);
REP(i, P) flow.add_edge(0, i + 1, A[xu[i]]), atot -= A[xu[i]], flow.add_edge(i + 1, P + Q + 2, W - yu.size());
flow.add_edge(0, P + 1, atot);
REP(i, Q) flow.add_edge(P + 2 + i, T, B[yu[i]]), btot -= B[yu[i]], flow.add_edge(P + 1, P + 2 + i, H - xu.size());
flow.add_edge(P + Q + 2, T, btot);
flow.add_edge(P + 1, P + Q + 2, (H - xu.size()) * (W - yu.size()));
REP(i, P) REP(j, Q) if (!bad[xu[i]][yu[j]]) flow.add_edge(i + 1, P + 2 + j, 1);
if (allflow != flow.Dinic(0, T)) muri();
vector<string> ret(H, string(W, '.'));
REP(i, H) REP(j, W) if (bad[i][j]) ret[i][j] = 'x';
REP(i, P) for (auto e : flow.edges[1 + i])
{
if (e.to >= P + 2 and e.to < P + Q + 2 and e.cap == 0)
{
int x = xu[i];
int y = yu[e.to - P - 2];
A[x]--, B[y]--, ret[x][y] = 'o';
}
}
REP(i, H) REP(j, W) if (A[i] and B[j] and ret[i][j] == '.')
{
A[i]--, B[j]--, ret[i][j] = 'o';
}
cout << "Yay!\n";
for (auto str : ret)
cout << str << '\n';
}
hitonanode