結果
| 問題 |
No.1124 Earthquake Safety
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2020-07-23 12:15:06 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 349 ms / 3,000 ms |
| コード長 | 10,666 bytes |
| コンパイル時間 | 13,818 ms |
| コンパイル使用メモリ | 401,204 KB |
| 実行使用メモリ | 48,640 KB |
| 最終ジャッジ日時 | 2024-06-23 17:29:16 |
| 合計ジャッジ時間 | 29,469 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 58 |
ソースコード
// ---------- begin Rerooting ----------
pub trait RerootingOperator {
type Value: Clone;
type Edge: Clone;
fn init(&mut self, v: usize) -> Self::Value;
fn merge(&mut self, p: &Self::Value, c: &Self::Value, e: &Self::Edge) -> Self::Value;
}
pub struct Rerooting<R: RerootingOperator> {
manager: R,
size: usize,
edge: Vec<(usize, usize, R::Edge, R::Edge)>,
}
impl<R: RerootingOperator> Rerooting<R> {
pub fn new(size: usize, manager: R) -> Self {
Rerooting {
manager: manager,
size: size,
edge: vec![],
}
}
#[allow(dead_code)]
pub fn add_edge(&mut self, a: usize, b: usize, cost: R::Edge) {
assert!(a < self.size && b < self.size && a != b);
self.add_edge_bi(a, b, cost.clone(), cost);
}
#[allow(dead_code)]
pub fn add_edge_bi(&mut self, a: usize, b: usize, ab: R::Edge, ba: R::Edge) {
assert!(a < self.size && b < self.size && a != b);
self.edge.push((a, b, ab, ba));
}
pub fn solve(&mut self) -> Vec<R::Value> {
let size = self.size;
let mut graph = vec![vec![]; size];
for e in self.edge.iter() {
graph[e.0].push((e.1, e.2.clone()));
graph[e.1].push((e.0, e.3.clone()));
}
let root = 0;
let mut topo = vec![];
let mut parent = vec![root; size];
let mut stack = vec![root];
let mut parent_edge: Vec<Option<R::Edge>> = (0..size).map(|_| None).collect();
while let Some(v) = stack.pop() {
topo.push(v);
if let Some(k) = graph[v].iter().position(|e| e.0 == parent[v]) {
let (_, c) = graph[v].remove(k);
parent_edge[v] = Some(c);
}
for e in graph[v].iter() {
parent[e.0] = v;
stack.push(e.0);
}
}
assert!(topo.len() == size);
let manager = &mut self.manager;
let mut down: Vec<_> = (0..size).map(|v| manager.init(v)).collect();
for &v in topo.iter().rev() {
for e in graph[v].iter() {
down[v] = manager.merge(&down[v], &down[e.0], &e.1);
}
}
let mut up: Vec<_> = (0..size).map(|v| manager.init(v)).collect();
let mut stack = vec![];
for &v in topo.iter() {
if let Some(e) = parent_edge[v].take() {
let ini = manager.init(v);
up[v] = manager.merge(&ini, &up[v], &e);
}
if !graph[v].is_empty() {
stack.push((graph[v].as_slice(), up[v].clone()));
while let Some((g, val)) = stack.pop() {
if g.len() == 1 {
up[g[0].0] = val;
} else {
let m = g.len() / 2;
let (a, b) = g.split_at(m);
for a in [(a, b), (b, a)].iter() {
let mut p = val.clone();
for a in a.0.iter() {
p = manager.merge(&p, &down[a.0], &a.1);
}
stack.push((a.1, p));
}
}
}
}
for e in graph[v].iter() {
up[v] = manager.merge(&up[v], &down[e.0], &e.1);
}
}
up
}
}
// ---------- end Rerooting ----------
// ---------- begin ModInt ----------
mod modint {
#[allow(dead_code)]
pub struct Mod;
impl ConstantModulo for Mod {
const MOD: u32 = 1_000_000_007;
}
#[allow(dead_code)]
pub struct StaticMod;
static mut STATIC_MOD: u32 = 0;
impl Modulo for StaticMod {
fn modulo() -> u32 {
unsafe { STATIC_MOD }
}
}
#[allow(dead_code)]
impl StaticMod {
pub fn set_modulo(p: u32) {
unsafe {
STATIC_MOD = p;
}
}
}
use std::marker::*;
use std::ops::*;
pub trait Modulo {
fn modulo() -> u32;
}
pub trait ConstantModulo {
const MOD: u32;
}
impl<T> Modulo for T
where
T: ConstantModulo,
{
fn modulo() -> u32 {
T::MOD
}
}
pub struct ModularInteger<T>(pub u32, PhantomData<T>);
impl<T> Clone for ModularInteger<T> {
fn clone(&self) -> Self {
ModularInteger::new_unchecked(self.0)
}
}
impl<T> Copy for ModularInteger<T> {}
impl<T: Modulo> Add for ModularInteger<T> {
type Output = ModularInteger<T>;
fn add(self, rhs: Self) -> Self::Output {
let mut d = self.0 + rhs.0;
if d >= T::modulo() {
d -= T::modulo();
}
ModularInteger::new_unchecked(d)
}
}
impl<T: Modulo> AddAssign for ModularInteger<T> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T: Modulo> Sub for ModularInteger<T> {
type Output = ModularInteger<T>;
fn sub(self, rhs: Self) -> Self::Output {
let mut d = T::modulo() + self.0 - rhs.0;
if d >= T::modulo() {
d -= T::modulo();
}
ModularInteger::new_unchecked(d)
}
}
impl<T: Modulo> SubAssign for ModularInteger<T> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<T: Modulo> Mul for ModularInteger<T> {
type Output = ModularInteger<T>;
fn mul(self, rhs: Self) -> Self::Output {
let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
ModularInteger::new_unchecked(v as u32)
}
}
impl<T: Modulo> MulAssign for ModularInteger<T> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<T: Modulo> Neg for ModularInteger<T> {
type Output = ModularInteger<T>;
fn neg(self) -> Self::Output {
if self.0 == 0 {
Self::zero()
} else {
Self::new_unchecked(T::modulo() - self.0)
}
}
}
impl<T> std::fmt::Display for ModularInteger<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T: Modulo> std::str::FromStr for ModularInteger<T> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModularInteger::new(val))
}
}
impl<T: Modulo> From<usize> for ModularInteger<T> {
fn from(val: usize) -> ModularInteger<T> {
ModularInteger::new_unchecked((val % T::modulo() as usize) as u32)
}
}
impl<T: Modulo> From<i64> for ModularInteger<T> {
fn from(val: i64) -> ModularInteger<T> {
let m = T::modulo() as i64;
ModularInteger::new((val % m + m) as u32)
}
}
#[allow(dead_code)]
impl<T> ModularInteger<T> {
pub fn new_unchecked(d: u32) -> Self {
ModularInteger(d, PhantomData)
}
pub fn zero() -> Self {
ModularInteger::new_unchecked(0)
}
pub fn one() -> Self {
ModularInteger::new_unchecked(1)
}
pub fn is_zero(&self) -> bool {
self.0 == 0
}
}
#[allow(dead_code)]
impl<T: Modulo> ModularInteger<T> {
pub fn new(d: u32) -> Self {
ModularInteger::new_unchecked(d % T::modulo())
}
pub fn pow(&self, mut n: u64) -> Self {
let mut t = Self::one();
let mut s = *self;
while n > 0 {
if n & 1 == 1 {
t *= s;
}
s *= s;
n >>= 1;
}
t
}
pub fn inv(&self) -> Self {
assert!(self.0 != 0);
self.pow(T::modulo() as u64 - 2)
}
}
#[allow(dead_code)]
pub fn mod_pow(r: u64, mut n: u64, m: u64) -> u64 {
let mut t = 1 % m;
let mut s = r % m;
while n > 0 {
if n & 1 == 1 {
t = t * s % m;
}
s = s * s % m;
n >>= 1;
}
t
}
}
// ---------- end ModInt ----------
//https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 より
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
//
use modint::*;
type ModInt = ModularInteger<Mod>;
struct R {
inv: ModInt,
}
impl RerootingOperator for R {
// sum P, PxPy
type Value = (ModInt, ModInt);
type Edge = ();
fn init(&mut self, _v: usize) -> Self::Value {
(ModInt::one(), ModInt::zero())
}
fn merge(&mut self, p: &Self::Value, c: &Self::Value, _e: &Self::Edge) -> Self::Value {
(p.0 + self.inv * c.0, p.1 + self.inv * c.1 + p.0 * c.0)
}
}
fn run() {
input! {
n: usize,
e: [(usize1, usize1); n - 1],
}
let mut solver = Rerooting::new(n,R{inv: ModInt::new(2).inv()});
for (a, b) in e {
solver.add_edge(a, b, ());
}
let ans = solver
.solve()
.into_iter()
.fold(ModInt::zero(), |s, a| s + a.0 + a.1)
* ModInt::new(2).pow((n - 1) as u64);
println!("{}", ans);
}
fn main() {
run();
}
akakimidori