結果
問題 | No.916 Encounter On A Tree |
ユーザー |
|
提出日時 | 2020-07-23 15:50:18 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,696 bytes |
コンパイル時間 | 12,029 ms |
コンパイル使用メモリ | 280,668 KB |
最終ジャッジ日時 | 2025-01-12 04:14:47 |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 37 WA * 18 MLE * 1 |
ソースコード
#pragma region #pragma GCC target("avx2") #pragma GCC optimize("03") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; typedef long double ld; typedef long long ll; typedef unsigned long long ull; #define endl "\n" #define FOR(i,a,b) for(int i=(a);i<=(b);i++) #define PII pair<int, int> #define PLL pair<ll, ll> #define ALL(x) (x).begin(), (x).end() constexpr int INF=1<<30; constexpr ll LINF=1LL<<60; constexpr ll mod=1e9+7; constexpr int NIL = -1; template<class T>inline bool chmax(T &a, const T &b) { if (a<b) { a = b; return 1; } return 0; } template<class T>inline bool chmin(T &a, const T &b) { if (b<a) { a = b; return 1; } return 0; } #pragma endregion //------------------- struct mint { ll x; mint(ll x=0):x(x%mod){} bool operator==(const mint a)const{return x==a.x;} bool operator!=(const mint a)const{return x!=a.x;} bool operator>=(const mint a){return (x >= a.x)? 1: 0;} bool operator<(const mint a){return !(*this>=a);} bool operator>(const mint a){return (x > a.x)? 1:0;} bool operator<=(const mint a){return !(*this>a);} mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this; } mint& operator/=(const mint a) { return (*this) *= a.inv(); } mint operator+(const mint a) const { mint res(*this); return res+=a; } mint operator-(const mint a) const { mint res(*this); return res-=a; } mint operator*(const mint a) const { mint res(*this); return res*=a; } mint operator/(const mint a) const { mint res(*this); return res/=a; } mint pow(ll t) const { if (!t) return 1; mint a = pow(t>>1); a *= a; //2 square if (t&1) a *= *this; return a; } // for prime mod mint inv() const { return pow(mod-2); } }; struct combination { vector<mint> fact, ifact; combination(int n):fact(n+1),ifact(n+1) { fact[0] = 1; for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i; ifact[n] = fact[n].inv(); for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i; } mint operator()(int n, int k) { if (k < 0 || k > n) return 0; return fact[n]*ifact[k]*ifact[n-k]; } } comb(100005); mint f(int n, int k) { if (n < 0) return 0; // nPk = nCk * k! mint res = comb(n,k); res *= comb.fact[k]; return res; } int depth(int a) { int i = 1; int cur = 2; while(cur-1 < a) { i++; cur *= 2; } return i; } mint solve() { int d,l,r,k; cin >> d >> l >> r >> k; int dep_l = depth(l); int dep_r = depth(r); // cout << dep_l << dep_r << endl; int dep_diff = dep_r - dep_l; if(k < dep_diff) return mint(0); int cnt = 0; while(k > dep_diff and cnt <= dep_l - 1) {dep_diff += 2; cnt++;} if(k != dep_diff) return mint(0); // cout << cnt << endl; mint ans; int par = dep_l - cnt; if(cnt != 0) { ans = mint(2).pow(dep_l-par-1) * mint(2).pow(dep_r-par-1) * 2; ans *= mint(2).pow(par-1); for(int i=2; i<=d; i++) { auto num = mint(2).pow(i-1) - (i==dep_l? 1:0) - (i==dep_r? 1:0); ans *= f(num.x, num.x); } } else { ans = mint(2).pow(dep_r - par); ans *= mint(2).pow(par-1); for(int i=2; i<=d; i++) { auto num = mint(2).pow(i-1) - (i==dep_l? 1:0) - (i==dep_r? 1:0); ans *= f(num.x, num.x); } } return ans; } int main(){ cin.tie(0); ios::sync_with_stdio(false); //cout << fixed << setprecision(15); auto res = solve(); cout << res.x << endl; return 0; }