結果

問題 No.1123 Afforestation
ユーザー KoDKoD
提出日時 2020-07-23 22:27:40
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
MLE  
実行時間 -
コード長 17,966 bytes
コンパイル時間 1,677 ms
コンパイル使用メモリ 116,276 KB
実行使用メモリ 518,016 KB
最終ジャッジ日時 2024-06-23 21:15:29
合計ジャッジ時間 25,108 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 4 ms
5,376 KB
testcase_04 AC 28 ms
19,712 KB
testcase_05 AC 349 ms
132,992 KB
testcase_06 MLE -
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 3 ms
5,376 KB
testcase_10 AC 4 ms
5,376 KB
testcase_11 AC 13 ms
9,984 KB
testcase_12 AC 151 ms
64,640 KB
testcase_13 MLE -
testcase_14 AC 2 ms
6,940 KB
testcase_15 AC 2 ms
6,944 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 4 ms
6,940 KB
testcase_19 AC 29 ms
20,224 KB
testcase_20 AC 378 ms
132,352 KB
testcase_21 MLE -
testcase_22 MLE -
testcase_23 MLE -
testcase_24 MLE -
testcase_25 MLE -
testcase_26 AC 2 ms
6,940 KB
testcase_27 AC 2 ms
6,940 KB
testcase_28 AC 3 ms
6,944 KB
testcase_29 AC 2 ms
6,940 KB
testcase_30 AC 2 ms
6,944 KB
testcase_31 AC 3 ms
6,940 KB
testcase_32 AC 2 ms
6,944 KB
testcase_33 AC 2 ms
6,940 KB
testcase_34 AC 4 ms
6,940 KB
testcase_35 AC 4 ms
6,940 KB
testcase_36 AC 2 ms
6,944 KB
testcase_37 AC 3 ms
6,940 KB
testcase_38 AC 2 ms
6,940 KB
testcase_39 AC 5 ms
6,940 KB
testcase_40 AC 5 ms
6,940 KB
testcase_41 AC 5 ms
6,940 KB
testcase_42 AC 12 ms
9,984 KB
testcase_43 AC 26 ms
20,096 KB
testcase_44 AC 50 ms
32,512 KB
testcase_45 AC 54 ms
32,640 KB
testcase_46 AC 66 ms
35,712 KB
testcase_47 AC 66 ms
35,840 KB
testcase_48 AC 2 ms
6,944 KB
testcase_49 AC 2 ms
6,940 KB
testcase_50 AC 4 ms
6,940 KB
testcase_51 AC 5 ms
6,940 KB
testcase_52 AC 2 ms
6,940 KB
testcase_53 AC 2 ms
6,944 KB
testcase_54 AC 2 ms
6,940 KB
testcase_55 AC 4 ms
6,940 KB
testcase_56 AC 5 ms
6,940 KB
testcase_57 AC 4 ms
6,948 KB
testcase_58 AC 12 ms
9,856 KB
testcase_59 AC 26 ms
20,224 KB
testcase_60 AC 55 ms
32,512 KB
testcase_61 AC 54 ms
32,640 KB
testcase_62 AC 67 ms
35,712 KB
testcase_63 AC 67 ms
35,840 KB
testcase_64 AC 2 ms
6,940 KB
testcase_65 AC 2 ms
6,940 KB
testcase_66 AC 3 ms
6,944 KB
testcase_67 AC 2 ms
6,940 KB
testcase_68 AC 4 ms
6,940 KB
testcase_69 AC 8 ms
8,192 KB
testcase_70 AC 12 ms
9,856 KB
testcase_71 AC 27 ms
20,224 KB
testcase_72 AC 2 ms
6,944 KB
testcase_73 AC 2 ms
6,940 KB
testcase_74 AC 2 ms
6,940 KB
testcase_75 AC 2 ms
6,944 KB
testcase_76 AC 2 ms
6,944 KB
testcase_77 AC 2 ms
6,940 KB
testcase_78 AC 2 ms
6,944 KB
testcase_79 AC 2 ms
6,940 KB
testcase_80 AC 2 ms
6,944 KB
testcase_81 AC 2 ms
6,940 KB
testcase_82 AC 2 ms
6,940 KB
testcase_83 AC 2 ms
6,940 KB
testcase_84 MLE -
testcase_85 MLE -
testcase_86 AC 2 ms
6,940 KB
testcase_87 AC 2 ms
6,944 KB
testcase_88 MLE -
testcase_89 MLE -
testcase_90 AC 2 ms
6,940 KB
testcase_91 AC 2 ms
6,940 KB
testcase_92 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"

/**
 * @title Template
 */

#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>

template <class T, class U>
inline bool chmin(T &lhs, const U &rhs) {
  if (lhs > rhs) { lhs = rhs; return true; }
  return false;
}

template <class T, class U>
inline bool chmax(T &lhs, const U &rhs) {
  if (lhs < rhs) { lhs = rhs; return true; }
  return false;
}

struct range {
  using itr = int64_t;
  struct iterator {
    itr i;
    constexpr iterator(itr i_) noexcept : i(i_) { }
    constexpr void operator ++ () noexcept { ++i; }
    constexpr itr operator * () const noexcept { return i; }
    constexpr bool operator != (iterator x) const noexcept { return i != x.i; }
  };
  const iterator l, r;
  constexpr range(itr l_, itr r_) noexcept : l(l_), r(std::max(l_, r_)) { }
  constexpr iterator begin() const noexcept { return l; }
  constexpr iterator end() const noexcept { return r; }
};

struct revrange {
  using itr = int64_t;
  struct iterator {
    itr i;
    constexpr iterator(itr i_) noexcept : i(i_) { }
    constexpr void operator ++ () noexcept { --i; }
    constexpr itr operator * () const noexcept { return i; }
    constexpr bool operator != (iterator x) const noexcept { return i != x.i; }
  };
  const iterator l, r;
  constexpr revrange(itr l_, itr r_) noexcept : l(l_ - 1), r(std::max(l_, r_) - 1) { }
  constexpr iterator begin() const noexcept { return r; }
  constexpr iterator end() const noexcept { return l; }
};

#line 2 "/Users/kodamankod/Desktop/Programming/Library/graph/network.cpp"

#include <cstddef>
#line 7 "/Users/kodamankod/Desktop/Programming/Library/graph/network.cpp"
#include <type_traits>

template <class Edge>
class network {
public:
  using vertex_type = typename Edge::vertex_type;
  using edge_type   = Edge;
  using size_type   = size_t;

  class index_helper {
  private:
    const size_type M_size;
  public:
    explicit index_helper(const size_type size): M_size(size) { }
    vertex_type operator [] (const size_type index) const {
      return to_vertex(index);
    }
    vertex_type to_vertex(const size_type index) const {
      return index + M_size;
    }
    size_type to_index(const vertex_type vert) const {
      return vert - M_size;
    }
  };

protected:
  std::vector<std::vector<edge_type>> M_graph;

public:
  network() = default;

  template <bool ReturnsIndex = true>
  typename std::enable_if<ReturnsIndex, vertex_type>::type add_vertex() {
    vertex_type res = M_graph.size();
    M_graph.push_back({ });
    return res;
  }
  template <bool ReturnsIndex = true>
  typename std::enable_if<!ReturnsIndex, void>::type add_vertex() {
    M_graph.push_back({ });
  }

  template <bool ReturnsIndices = true>
  typename std::enable_if<ReturnsIndices, index_helper>::type 
  add_vertices(const size_type size) {
    size_type cur = M_graph.size();
    M_graph.resize(cur + size);
    return index_helper(cur);
  }
  template <bool ReturnsIndices = true>
  typename std::enable_if<!ReturnsIndices, void>::type 
  add_vertices(const size_type size) {
    size_type cur = M_graph.size();
    M_graph.resize(cur + size);
  }
  
  void add_edge(const edge_type &edge) {
    M_graph[edge.source].push_back(edge);
  }
  template <class... Args>
  void emplace_edge(const vertex_type src, Args&&... args) {
    M_graph[src].emplace_back(src, std::forward<Args>(args)...);
  }

  std::vector<edge_type> &operator [] (const vertex_type vert) {
    return M_graph[vert];
  }
  std::vector<edge_type> &at(const vertex_type vert) {
    return M_graph.at(vert);
  }
  const std::vector<edge_type> &operator [] (const vertex_type vert) const {
    return M_graph[vert];
  }
  const std::vector<edge_type> &at(const vertex_type vert) const {
    return M_graph.at(vert);
  }
  const std::vector<std::vector<edge_type>> &get() const {
    return M_graph;
  }

  size_type size() const {
    return M_graph.size();
  }
  bool empty() const {
    return M_graph.empty();
  }
  void clear() {
    M_graph.clear();
    M_graph.shrink_to_fit();
  }

};

class base_edge {
public:
  using vertex_type = size_t;
  const vertex_type source, dest;
  explicit base_edge(const vertex_type source, const vertex_type dest): 
    source(source), dest(dest) 
  { }
  base_edge reverse() {
    return base_edge(dest, source);
  }
};

template <class Flow>
class flow_edge: public base_edge {
public:
  using vertex_type = typename base_edge::vertex_type;
  using flow_type   = Flow;
  flow_type flow;
  const flow_type capacity;
  explicit flow_edge(const base_edge &edge, const flow_type capacity):
    base_edge(edge), flow(0), capacity(capacity)
  { }
  explicit flow_edge(const base_edge &edge, const flow_type flow, const flow_type capacity):
    base_edge(edge), flow(flow), capacity(capacity)
  { }
  explicit flow_edge(const vertex_type source, const vertex_type dest, const flow_type capacity):
    base_edge(source, dest), flow(0), capacity(capacity)
  { }
  explicit flow_edge(const vertex_type source, const vertex_type dest, const flow_type flow, const flow_type capacity):
    base_edge(source, dest), flow(flow), capacity(capacity)
  { }
  flow_edge reverse() const {
    return flow_edge(static_cast<base_edge>(*this).reverse(), capacity);
  }
};

template <class Flow, class Cost>
class flow_cost_edge: public flow_edge<Flow> {
public:
  using vertex_type = typename flow_edge<Flow>::vertex_type;
  using flow_type   = typename flow_edge<Flow>::flow_type;
  using cost_type   = Cost;
  const cost_type cost;
  explicit flow_cost_edge(const flow_edge<Flow> &edge, const cost_type cost):
    flow_edge<Flow>(edge), cost(cost)
  { }
  explicit flow_cost_edge(const vertex_type source, const vertex_type dest, const flow_type capacity, const cost_type cost):
    flow_edge<Flow>(source, dest, capacity), cost(cost)
  { }
  explicit flow_cost_edge(const vertex_type source, const vertex_type dest, const flow_type flow, const flow_type capacity, const cost_type cost):
    flow_edge<Flow>(source, dest, flow, capacity), cost(cost)
  { }
  flow_cost_edge reverse() const {
    return flow_cost_edge(static_cast<flow_edge<Flow>>(*this).reverse(), -cost);
  }
};

/**
 * @title Network
 */
#line 2 "/Users/kodamankod/Desktop/Programming/Library/graph/push_relabel.cpp"

#include <queue>
#line 5 "/Users/kodamankod/Desktop/Programming/Library/graph/push_relabel.cpp"

#line 7 "/Users/kodamankod/Desktop/Programming/Library/graph/push_relabel.cpp"

namespace push_relabel_detail {

  class stack_helper {
  private:
    const size_t M_size;
    std::vector<size_t> M_stack;
  public:
    explicit stack_helper(const size_t size):
      M_size(size), M_stack(size * 2)
    { clear(); }
    size_t top(const size_t height) const {
      return M_stack[M_size + height];
    }
    bool empty(const size_t height) const { 
      return M_stack[M_size + height] == M_size + height; 
    }
    void pop(const size_t height) {
      M_stack[M_size + height] = M_stack[M_stack[M_size + height]];
    }
    void push(const size_t height, const size_t node) {
      M_stack[node] = M_stack[M_size + height];
      M_stack[M_size + height] = node;
    }
    void clear() {
      std::iota(M_stack.begin() + M_size, M_stack.end(), M_size);
    }
  };

  class list_helper {
  private:
    const size_t M_size;
    std::vector<std::pair<size_t, size_t>> M_list;
  public:
    explicit list_helper(const size_t size):
      M_size(size), M_list(size * 2)
    { clear(); }
    bool empty(const size_t height) {
      return M_list[M_size + height].second == M_size + height;
    }
    bool more_than_one(const size_t height) {
      return M_list[M_size + height].first != M_list[M_size + height].second;
    }
    void insert(const size_t height, const size_t node) {
      M_list[node].first = M_list[M_size + height].first;
      M_list[node].second = M_size + height;
      M_list[M_list[M_size + height].first].second = node;
      M_list[M_size + height].first = node;
    }
    void erase(const size_t node) {
      M_list[M_list[node].first].second = M_list[node].second;
      M_list[M_list[node].second].first = M_list[node].first;
    }
    void clear() {
      for (size_t index = M_size; index < M_size * 2; ++index) {
        M_list[index].first = M_list[index].second = index;
      }
    }
    void clear(const size_t height) {
      const size_t index = M_size + height;
      M_list[index].first = M_list[index].second = index;
    }
    template <class Func>
    void apply_all(const size_t height, Func &&func) {
      size_t index = M_list[M_size + height].second;
      while (index < M_size) {
        func(index);
        index = M_list[index].second;
      }
    }
  };

};

template <class Network>
class push_relabel {
public:
  using network_type = Network;
  using vertex_type  = typename Network::vertex_type;
  using edge_type    = typename Network::edge_type;
  using size_type    = typename Network::size_type;
  using flow_type    = typename Network::edge_type::flow_type;
  using height_type  = size_t;

  static_assert(std::is_integral<flow_type>::value, "invalid flow type :: non-integral");

private:
  class residual_edge: public edge_type {
  public:
    const size_type rev;
    const bool is_rev;
    explicit residual_edge(const edge_type &edge, const size_type rev, const bool is_rev):
      edge_type(edge), rev(rev), is_rev(is_rev)
    { }
  };

  class node_type {
  public:
    std::vector<residual_edge> edges;
    flow_type excess;
    height_type height;
    size_type iter;
    node_type() = default;
  };

  flow_type M_remain(const residual_edge &edge) {
    return edge.capacity - edge.flow;
  }
  residual_edge &M_cur_edge(node_type &node) {
    return node.edges[node.iter];
  }
  residual_edge &M_rev_edge(const residual_edge &edge) {
    return M_graph[edge.dest].edges[edge.rev];
  }

  void M_push(node_type &node, residual_edge &edge) {
    const auto flow = std::min(node.excess, M_remain(edge));
    edge.flow += flow;
    node.excess -= flow;
    M_rev_edge(edge).flow -= flow;
    M_graph[edge.dest].excess += flow;
  }
  void M_relabel(node_type &node) {
    height_type min = M_graph.size() + 1;
    for (const auto &edge: node.edges) {
      if (M_remain(edge) > 0 && min > M_graph[edge.dest].height + 1) {
        min = M_graph[edge.dest].height + 1;
      }
    }
    node.height = min;
  }

  void M_reverse_bfs(const vertex_type source) {
    for (auto &node: M_graph) {
      node.height = M_graph.size() + 1;
    }
    M_graph[source].height = 0;
    std::queue<vertex_type> queue;
    queue.push(source);
    while (!queue.empty()) {
      const auto vert = queue.front();
      queue.pop();
      for (const auto &edge: M_graph[vert].edges) {
        if (M_remain(M_rev_edge(edge)) > 0) {
          if (M_graph[edge.dest].height == M_graph.size() + 1) {
            M_graph[edge.dest].height = M_graph[vert].height + 1;
            queue.push(edge.dest);
          }
        }
      }
    }
  }

  std::vector<node_type> M_graph;

public:
  push_relabel() = default;
  explicit push_relabel(const network_type &net) {
    const auto &graph = net.get();
    M_graph.resize(graph.size());
    for (size_type src = 0; src < graph.size(); ++src) {
      for (const auto &edge: graph[src]) {
        M_graph[src].edges.emplace_back(edge, M_graph[edge.dest].edges.size(), false);
        M_graph[edge.dest].edges.emplace_back(edge.reverse(), M_graph[src].edges.size() - 1, true);
      }
    }
  }

  template <bool ValueOnly = true>
  typename std::enable_if<ValueOnly, flow_type>::type
  max_flow(const vertex_type source, const vertex_type sink) {
    push_relabel_detail::stack_helper active(M_graph.size());
    push_relabel_detail::list_helper level(M_graph.size());
    height_type min_gap, max_active;
    for (auto &node: M_graph) {
      node.excess = 0;
      node.iter = 0;
      for (auto &edge: node.edges) {
        if (!edge.is_rev) edge.flow = 0;
        else edge.flow = edge.capacity;
      }
    }
    M_reverse_bfs(sink);
    if (M_graph[source].height == M_graph.size() + 1) {
      return 0;
    }
    for (auto &edge: M_graph[source].edges) {
      M_graph[source].excess += M_remain(edge);
      M_push(M_graph[source], edge);
    }
    M_graph[source].height = M_graph.size();
    min_gap = M_graph.size();
    max_active = 0;
    for (size_type index = 0; index < M_graph.size(); ++index) {
      const auto &node = M_graph[index];
      if (node.height < M_graph.size()) {
        if (node.excess > 0 && index != sink) {
          active.push(node.height, index);
          max_active = std::max(max_active, node.height);
        }
        level.insert(node.height, index);
      }
    }
    for (size_type index = 0; index < M_graph.size(); ++index) {
      if (level.empty(index)) {
        min_gap = index;
        break;
      }
    }
    while (max_active > 0) {
      if (active.empty(max_active)) {
        --max_active;
        continue;
      }
      const auto vert = active.top(max_active);
      auto &node = M_graph[vert];
      active.pop(max_active);
      while (true) {
        auto &edge = M_cur_edge(node);
        const auto &dest = M_graph[edge.dest];
        if (M_remain(edge) > 0 && node.height == dest.height + 1) {
          if (dest.excess == 0 && edge.dest != sink) {
            active.push(dest.height, edge.dest);
            max_active = std::max(max_active, dest.height);
          }
          M_push(node, edge);
          if (node.excess == 0) {
            break;
          }
        }
        node.iter++;
        if (node.iter == node.edges.size()) {
          node.iter = 0;
          if (level.more_than_one(node.height)) {
            level.erase(vert);
            M_relabel(node);
            if (node.height > min_gap) {
              node.height = M_graph.size() + 1;
              break;
            }
            if (node.height == min_gap) {
              min_gap++;
            }
            level.insert(node.height, vert);
          }
          else {
            const height_type old_gap = min_gap;
            min_gap = node.height;
            for (height_type index = node.height; index < old_gap; ++index) {
              level.apply_all(index, [&](const vertex_type vert) {
                M_graph[vert].height = M_graph.size() + 1;
              });
              level.clear(index);
            }
            break;
          }
        }
      }
      max_active = std::min(max_active, min_gap - 1);
    }
    return M_graph[sink].excess;
  }

  template <bool ValueOnly = true>
  typename std::enable_if<!ValueOnly, std::pair<flow_type, network_type>>::type
  max_flow(const vertex_type source, const vertex_type sink) {
    const auto flow = max_flow<true>(source, sink);
    std::queue<vertex_type> active;
    M_reverse_bfs(source);
    for (vertex_type index = 0; index < M_graph.size(); ++index) {
      const auto &node = M_graph[index];
      if (node.excess > 0 && node.height < M_graph.size() && index != sink) {
        active.push(index);
      }
    }
    while (!active.empty()) {
      auto &node = M_graph[active.front()];
      active.pop();
      while (node.excess > 0) {
        auto &edge = M_cur_edge(node);
        const auto &dest = M_graph[edge.dest];
        if (M_remain(edge) > 0 && node.height == dest.height + 1) {
          if (dest.excess == 0 && edge.dest != source) {
            active.push(edge.dest);
          }
          M_push(node, edge);
          if (node.excess == 0) {
            break;
          }
        }
        node.iter++;
        if (node.iter == node.edges.size()) {
          node.iter = 0;
          M_relabel(node);
        }
      }
    }
    network_type graph;
    graph.template add_vertices <false>(M_graph.size());
    for (size_type index = 0; index < M_graph.size(); ++index) {
      for (const auto &edge: M_graph[index].edges) {
        if (!edge.is_rev) {
          graph.add_edge(static_cast<edge_type>(edge));
        }
      }
    }
    return std::make_pair(flow, std::move(graph));
  } 

};

/**
 * @title Push Relabel
 */
#line 57 "main.cpp"

using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;

constexpr i32 inf32 = (i32(1) << 30) - 1;
constexpr i64 inf64 = (i64(1) << 62) - 1;

int main() {
  size_t H, W;
  std::cin >> H >> W;
  std::vector<u32> A(H), B(W);
  for (auto &x: A) {
    std::cin >> x;
  }
  for (auto &x: B) {
    std::cin >> x;
  }
  const u32 sumA = std::accumulate(A.cbegin(), A.cend(), u32(0));
  const u32 sumB = std::accumulate(B.cbegin(), B.cend(), u32(0));
  if (sumA != sumB) {
    std::cout << ":(\n";
    return 0;
  }
  size_t K;
  std::cin >> K;
  std::vector<std::vector<bool>> available(H, std::vector<bool>(W, true));
  for (auto none: range(0, K)) {
    size_t x, y;
    std::cin >> x >> y;
    --x; --y;
    available[x][y] = false;
  }
  network<flow_edge<u32>> graph;
  const auto S = graph.add_vertex();
  const auto T = graph.add_vertex();
  const auto left = graph.add_vertices(H);
  const auto right = graph.add_vertices(W);
  for (auto i: range(0, H)) {
    graph.emplace_edge(S, left[i], A[i]);
  }
  for (auto j: range(0, W)) {
    graph.emplace_edge(right[j], T, B[j]);
  }
  for (auto i: range(0, H)) {
    for (auto j: range(0, W)) {
      if (available[i][j]) {
        graph.emplace_edge(left[i], right[j], 1);
      }
    }
  }
  const auto [flow, result] = push_relabel(graph).max_flow<false>(S, T);
  if (flow != sumA) {
    std::cout << ":(\n";
    return 0;
  }
  std::cout << "Yay!\n";
  std::vector<std::vector<char>> ans(H, std::vector<char>(W, '.'));
  for (auto i: range(0, H)) {
    for (const auto &e: result[left[i]]) {
      if (e.flow > 0) {
        ans[i][right.to_index(e.dest)] = 'o';
      }
    }
    for (auto j: range(0, W)) {
      if (!available[i][j]) {
        ans[i][j] = 'x';
      }
    }
  }
  for (const auto &vec: ans) {
    for (auto x: vec) {
      std::cout << x;
    }
    std::cout << '\n';
  }
  return 0;
}
0