結果
| 問題 |
No.1123 Afforestation
|
| コンテスト | |
| ユーザー |
KoD
|
| 提出日時 | 2020-07-23 22:31:25 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 17,783 bytes |
| コンパイル時間 | 5,899 ms |
| コンパイル使用メモリ | 148,568 KB |
| 最終ジャッジ日時 | 2025-01-12 04:37:46 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 79 MLE * 11 |
ソースコード
#line 1 "main.cpp"
/**
* @title Template
*/
#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
template <class T, class U>
inline bool chmin(T &lhs, const U &rhs) {
if (lhs > rhs) { lhs = rhs; return true; }
return false;
}
template <class T, class U>
inline bool chmax(T &lhs, const U &rhs) {
if (lhs < rhs) { lhs = rhs; return true; }
return false;
}
struct range {
using itr = int64_t;
struct iterator {
itr i;
constexpr iterator(itr i_) noexcept : i(i_) { }
constexpr void operator ++ () noexcept { ++i; }
constexpr itr operator * () const noexcept { return i; }
constexpr bool operator != (iterator x) const noexcept { return i != x.i; }
};
const iterator l, r;
constexpr range(itr l_, itr r_) noexcept : l(l_), r(std::max(l_, r_)) { }
constexpr iterator begin() const noexcept { return l; }
constexpr iterator end() const noexcept { return r; }
};
struct revrange {
using itr = int64_t;
struct iterator {
itr i;
constexpr iterator(itr i_) noexcept : i(i_) { }
constexpr void operator ++ () noexcept { --i; }
constexpr itr operator * () const noexcept { return i; }
constexpr bool operator != (iterator x) const noexcept { return i != x.i; }
};
const iterator l, r;
constexpr revrange(itr l_, itr r_) noexcept : l(l_ - 1), r(std::max(l_, r_) - 1) { }
constexpr iterator begin() const noexcept { return r; }
constexpr iterator end() const noexcept { return l; }
};
#line 2 "/Users/kodamankod/Desktop/Programming/Library/graph/network.cpp"
#include <cstddef>
#line 7 "/Users/kodamankod/Desktop/Programming/Library/graph/network.cpp"
#include <type_traits>
template <class Edge>
class network {
public:
using vertex_type = typename Edge::vertex_type;
using edge_type = Edge;
using size_type = size_t;
class index_helper {
private:
const size_type M_size;
public:
explicit index_helper(const size_type size): M_size(size) { }
vertex_type operator [] (const size_type index) const {
return to_vertex(index);
}
vertex_type to_vertex(const size_type index) const {
return index + M_size;
}
size_type to_index(const vertex_type vert) const {
return vert - M_size;
}
};
protected:
std::vector<std::vector<edge_type>> M_graph;
public:
network() = default;
template <bool ReturnsIndex = true>
typename std::enable_if<ReturnsIndex, vertex_type>::type add_vertex() {
vertex_type res = M_graph.size();
M_graph.push_back({ });
return res;
}
template <bool ReturnsIndex = true>
typename std::enable_if<!ReturnsIndex, void>::type add_vertex() {
M_graph.push_back({ });
}
template <bool ReturnsIndices = true>
typename std::enable_if<ReturnsIndices, index_helper>::type
add_vertices(const size_type size) {
size_type cur = M_graph.size();
M_graph.resize(cur + size);
return index_helper(cur);
}
template <bool ReturnsIndices = true>
typename std::enable_if<!ReturnsIndices, void>::type
add_vertices(const size_type size) {
size_type cur = M_graph.size();
M_graph.resize(cur + size);
}
void add_edge(const edge_type &edge) {
M_graph[edge.source].push_back(edge);
}
template <class... Args>
void emplace_edge(const vertex_type src, Args&&... args) {
M_graph[src].emplace_back(src, std::forward<Args>(args)...);
}
std::vector<edge_type> &operator [] (const vertex_type vert) {
return M_graph[vert];
}
std::vector<edge_type> &at(const vertex_type vert) {
return M_graph.at(vert);
}
const std::vector<edge_type> &operator [] (const vertex_type vert) const {
return M_graph[vert];
}
const std::vector<edge_type> &at(const vertex_type vert) const {
return M_graph.at(vert);
}
const std::vector<std::vector<edge_type>> &get() const {
return M_graph;
}
size_type size() const {
return M_graph.size();
}
bool empty() const {
return M_graph.empty();
}
void clear() {
M_graph.clear();
M_graph.shrink_to_fit();
}
};
class base_edge {
public:
using vertex_type = size_t;
const vertex_type source, dest;
explicit base_edge(const vertex_type source, const vertex_type dest):
source(source), dest(dest)
{ }
base_edge reverse() {
return base_edge(dest, source);
}
};
template <class Flow>
class flow_edge: public base_edge {
public:
using vertex_type = typename base_edge::vertex_type;
using flow_type = Flow;
flow_type flow;
const flow_type capacity;
explicit flow_edge(const base_edge &edge, const flow_type capacity):
base_edge(edge), flow(0), capacity(capacity)
{ }
explicit flow_edge(const base_edge &edge, const flow_type flow, const flow_type capacity):
base_edge(edge), flow(flow), capacity(capacity)
{ }
explicit flow_edge(const vertex_type source, const vertex_type dest, const flow_type capacity):
base_edge(source, dest), flow(0), capacity(capacity)
{ }
explicit flow_edge(const vertex_type source, const vertex_type dest, const flow_type flow, const flow_type capacity):
base_edge(source, dest), flow(flow), capacity(capacity)
{ }
flow_edge reverse() const {
return flow_edge(static_cast<base_edge>(*this).reverse(), capacity);
}
};
template <class Flow, class Cost>
class flow_cost_edge: public flow_edge<Flow> {
public:
using vertex_type = typename flow_edge<Flow>::vertex_type;
using flow_type = typename flow_edge<Flow>::flow_type;
using cost_type = Cost;
const cost_type cost;
explicit flow_cost_edge(const flow_edge<Flow> &edge, const cost_type cost):
flow_edge<Flow>(edge), cost(cost)
{ }
explicit flow_cost_edge(const vertex_type source, const vertex_type dest, const flow_type capacity, const cost_type cost):
flow_edge<Flow>(source, dest, capacity), cost(cost)
{ }
explicit flow_cost_edge(const vertex_type source, const vertex_type dest, const flow_type flow, const flow_type capacity, const cost_type cost):
flow_edge<Flow>(source, dest, flow, capacity), cost(cost)
{ }
flow_cost_edge reverse() const {
return flow_cost_edge(static_cast<flow_edge<Flow>>(*this).reverse(), -cost);
}
};
/**
* @title Network
*/
#line 2 "/Users/kodamankod/Desktop/Programming/Library/graph/push_relabel.cpp"
#include <queue>
#line 5 "/Users/kodamankod/Desktop/Programming/Library/graph/push_relabel.cpp"
#line 7 "/Users/kodamankod/Desktop/Programming/Library/graph/push_relabel.cpp"
namespace push_relabel_detail {
class stack_helper {
private:
const size_t M_size;
std::vector<size_t> M_stack;
public:
explicit stack_helper(const size_t size):
M_size(size), M_stack(size * 2)
{ clear(); }
size_t top(const size_t height) const {
return M_stack[M_size + height];
}
bool empty(const size_t height) const {
return M_stack[M_size + height] == M_size + height;
}
void pop(const size_t height) {
M_stack[M_size + height] = M_stack[M_stack[M_size + height]];
}
void push(const size_t height, const size_t node) {
M_stack[node] = M_stack[M_size + height];
M_stack[M_size + height] = node;
}
void clear() {
std::iota(M_stack.begin() + M_size, M_stack.end(), M_size);
}
};
class list_helper {
private:
const size_t M_size;
std::vector<std::pair<size_t, size_t>> M_list;
public:
explicit list_helper(const size_t size):
M_size(size), M_list(size * 2)
{ clear(); }
bool empty(const size_t height) {
return M_list[M_size + height].second == M_size + height;
}
bool more_than_one(const size_t height) {
return M_list[M_size + height].first != M_list[M_size + height].second;
}
void insert(const size_t height, const size_t node) {
M_list[node].first = M_list[M_size + height].first;
M_list[node].second = M_size + height;
M_list[M_list[M_size + height].first].second = node;
M_list[M_size + height].first = node;
}
void erase(const size_t node) {
M_list[M_list[node].first].second = M_list[node].second;
M_list[M_list[node].second].first = M_list[node].first;
}
void clear() {
for (size_t index = M_size; index < M_size * 2; ++index) {
M_list[index].first = M_list[index].second = index;
}
}
void clear(const size_t height) {
const size_t index = M_size + height;
M_list[index].first = M_list[index].second = index;
}
template <class Func>
void apply_all(const size_t height, Func &&func) {
size_t index = M_list[M_size + height].second;
while (index < M_size) {
func(index);
index = M_list[index].second;
}
}
};
};
template <class Network>
class push_relabel {
public:
using network_type = Network;
using vertex_type = typename Network::vertex_type;
using edge_type = typename Network::edge_type;
using size_type = typename Network::size_type;
using flow_type = typename Network::edge_type::flow_type;
using height_type = size_t;
static_assert(std::is_integral<flow_type>::value, "invalid flow type :: non-integral");
private:
class residual_edge: public edge_type {
public:
const size_type rev;
const bool is_rev;
explicit residual_edge(const edge_type &edge, const size_type rev, const bool is_rev):
edge_type(edge), rev(rev), is_rev(is_rev)
{ }
};
class node_type {
public:
std::vector<residual_edge> edges;
flow_type excess;
height_type height;
size_type iter;
node_type() = default;
};
flow_type M_remain(const residual_edge &edge) {
return edge.capacity - edge.flow;
}
residual_edge &M_cur_edge(node_type &node) {
return node.edges[node.iter];
}
residual_edge &M_rev_edge(const residual_edge &edge) {
return M_graph[edge.dest].edges[edge.rev];
}
void M_push(node_type &node, residual_edge &edge) {
const auto flow = std::min(node.excess, M_remain(edge));
edge.flow += flow;
node.excess -= flow;
M_rev_edge(edge).flow -= flow;
M_graph[edge.dest].excess += flow;
}
void M_relabel(node_type &node) {
height_type min = M_graph.size() + 1;
for (const auto &edge: node.edges) {
if (M_remain(edge) > 0 && min > M_graph[edge.dest].height + 1) {
min = M_graph[edge.dest].height + 1;
}
}
node.height = min;
}
void M_reverse_bfs(const vertex_type source) {
for (auto &node: M_graph) {
node.height = M_graph.size() + 1;
}
M_graph[source].height = 0;
std::queue<vertex_type> queue;
queue.push(source);
while (!queue.empty()) {
const auto vert = queue.front();
queue.pop();
for (const auto &edge: M_graph[vert].edges) {
if (M_remain(M_rev_edge(edge)) > 0) {
if (M_graph[edge.dest].height == M_graph.size() + 1) {
M_graph[edge.dest].height = M_graph[vert].height + 1;
queue.push(edge.dest);
}
}
}
}
}
std::vector<node_type> M_graph;
public:
push_relabel() = default;
explicit push_relabel(const network_type &net) {
const auto &graph = net.get();
M_graph.resize(graph.size());
for (size_type src = 0; src < graph.size(); ++src) {
for (const auto &edge: graph[src]) {
M_graph[src].edges.emplace_back(edge, M_graph[edge.dest].edges.size(), false);
M_graph[edge.dest].edges.emplace_back(edge.reverse(), M_graph[src].edges.size() - 1, true);
}
}
}
template <bool ValueOnly = true>
typename std::enable_if<ValueOnly, flow_type>::type
max_flow(const vertex_type source, const vertex_type sink) {
push_relabel_detail::stack_helper active(M_graph.size());
push_relabel_detail::list_helper level(M_graph.size());
height_type min_gap, max_active;
for (auto &node: M_graph) {
node.excess = 0;
node.iter = 0;
for (auto &edge: node.edges) {
if (!edge.is_rev) edge.flow = 0;
else edge.flow = edge.capacity;
}
}
M_reverse_bfs(sink);
if (M_graph[source].height == M_graph.size() + 1) {
return 0;
}
for (auto &edge: M_graph[source].edges) {
M_graph[source].excess += M_remain(edge);
M_push(M_graph[source], edge);
}
M_graph[source].height = M_graph.size();
min_gap = M_graph.size();
max_active = 0;
for (size_type index = 0; index < M_graph.size(); ++index) {
const auto &node = M_graph[index];
if (node.height < M_graph.size()) {
if (node.excess > 0 && index != sink) {
active.push(node.height, index);
max_active = std::max(max_active, node.height);
}
level.insert(node.height, index);
}
}
for (size_type index = 0; index < M_graph.size(); ++index) {
if (level.empty(index)) {
min_gap = index;
break;
}
}
while (max_active > 0) {
if (active.empty(max_active)) {
--max_active;
continue;
}
const auto vert = active.top(max_active);
auto &node = M_graph[vert];
active.pop(max_active);
while (true) {
auto &edge = M_cur_edge(node);
const auto &dest = M_graph[edge.dest];
if (M_remain(edge) > 0 && node.height == dest.height + 1) {
if (dest.excess == 0 && edge.dest != sink) {
active.push(dest.height, edge.dest);
max_active = std::max(max_active, dest.height);
}
M_push(node, edge);
if (node.excess == 0) {
break;
}
}
node.iter++;
if (node.iter == node.edges.size()) {
node.iter = 0;
if (level.more_than_one(node.height)) {
level.erase(vert);
M_relabel(node);
if (node.height > min_gap) {
node.height = M_graph.size() + 1;
break;
}
if (node.height == min_gap) {
min_gap++;
}
level.insert(node.height, vert);
}
else {
const height_type old_gap = min_gap;
min_gap = node.height;
for (height_type index = node.height; index < old_gap; ++index) {
level.apply_all(index, [&](const vertex_type vert) {
M_graph[vert].height = M_graph.size() + 1;
});
level.clear(index);
}
break;
}
}
}
max_active = std::min(max_active, min_gap - 1);
}
return M_graph[sink].excess;
}
template <bool ValueOnly = true>
typename std::enable_if<!ValueOnly, std::pair<flow_type, network_type>>::type
max_flow(const vertex_type source, const vertex_type sink) {
const auto flow = max_flow<true>(source, sink);
std::queue<vertex_type> active;
M_reverse_bfs(source);
for (vertex_type index = 0; index < M_graph.size(); ++index) {
const auto &node = M_graph[index];
if (node.excess > 0 && node.height < M_graph.size() && index != sink) {
active.push(index);
}
}
while (!active.empty()) {
auto &node = M_graph[active.front()];
active.pop();
while (node.excess > 0) {
auto &edge = M_cur_edge(node);
const auto &dest = M_graph[edge.dest];
if (M_remain(edge) > 0 && node.height == dest.height + 1) {
if (dest.excess == 0 && edge.dest != source) {
active.push(edge.dest);
}
M_push(node, edge);
if (node.excess == 0) {
break;
}
}
node.iter++;
if (node.iter == node.edges.size()) {
node.iter = 0;
M_relabel(node);
}
}
}
network_type graph;
graph.template add_vertices <false>(M_graph.size());
for (size_type index = 0; index < M_graph.size(); ++index) {
for (const auto &edge: M_graph[index].edges) {
if (!edge.is_rev) {
graph.add_edge(static_cast<edge_type>(edge));
}
}
}
return std::make_pair(flow, std::move(graph));
}
};
/**
* @title Push Relabel
*/
#line 57 "main.cpp"
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
constexpr i32 inf32 = (i32(1) << 30) - 1;
constexpr i64 inf64 = (i64(1) << 62) - 1;
int main() {
size_t H, W;
std::cin >> H >> W;
std::vector<u32> A(H), B(W);
for (auto &x: A) {
std::cin >> x;
}
for (auto &x: B) {
std::cin >> x;
}
const u32 sumA = std::accumulate(A.cbegin(), A.cend(), u32(0));
const u32 sumB = std::accumulate(B.cbegin(), B.cend(), u32(0));
if (sumA != sumB) {
std::cout << ":(\n";
return 0;
}
size_t K;
std::cin >> K;
std::vector<std::vector<char>> ans(H, std::vector<char>(W, '.'));
for (auto none: range(0, K)) {
size_t x, y;
std::cin >> x >> y;
--x; --y;
ans[x][y] = 'x';
}
network<flow_edge<u32>> graph;
const auto S = graph.add_vertex();
const auto T = graph.add_vertex();
const auto left = graph.add_vertices(H);
const auto right = graph.add_vertices(W);
for (auto i: range(0, H)) {
graph.emplace_edge(S, left[i], A[i]);
}
for (auto j: range(0, W)) {
graph.emplace_edge(right[j], T, B[j]);
}
for (auto i: range(0, H)) {
for (auto j: range(0, W)) {
if (ans[i][j] != 'x') {
graph.emplace_edge(left[i], right[j], 1);
}
}
}
const auto [flow, result] = push_relabel(graph).max_flow<false>(S, T);
if (flow != sumA) {
std::cout << ":(\n";
return 0;
}
std::cout << "Yay!\n";
for (auto i: range(0, H)) {
for (const auto &e: result[left[i]]) {
if (e.flow > 0) {
ans[i][right.to_index(e.dest)] = 'o';
}
}
}
for (const auto &vec: ans) {
for (auto x: vec) {
std::cout << x;
}
std::cout << '\n';
}
return 0;
}
KoD