結果
| 問題 |
No.1123 Afforestation
|
| コンテスト | |
| ユーザー |
KoD
|
| 提出日時 | 2020-07-23 23:16:53 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 13,533 bytes |
| コンパイル時間 | 1,754 ms |
| コンパイル使用メモリ | 108,428 KB |
| 最終ジャッジ日時 | 2025-01-12 04:40:47 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 1 |
| other | AC * 33 WA * 57 |
ソースコード
#line 1 "main.cpp"
/**
* @title Template
*/
#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
template <class T, class U>
inline bool chmin(T &lhs, const U &rhs) {
if (lhs > rhs) { lhs = rhs; return true; }
return false;
}
template <class T, class U>
inline bool chmax(T &lhs, const U &rhs) {
if (lhs < rhs) { lhs = rhs; return true; }
return false;
}
struct range {
using itr = int64_t;
struct iterator {
itr i;
constexpr iterator(itr i_) noexcept : i(i_) { }
constexpr void operator ++ () noexcept { ++i; }
constexpr itr operator * () const noexcept { return i; }
constexpr bool operator != (iterator x) const noexcept { return i != x.i; }
};
const iterator l, r;
constexpr range(itr l_, itr r_) noexcept : l(l_), r(std::max(l_, r_)) { }
constexpr iterator begin() const noexcept { return l; }
constexpr iterator end() const noexcept { return r; }
};
struct revrange {
using itr = int64_t;
struct iterator {
itr i;
constexpr iterator(itr i_) noexcept : i(i_) { }
constexpr void operator ++ () noexcept { --i; }
constexpr itr operator * () const noexcept { return i; }
constexpr bool operator != (iterator x) const noexcept { return i != x.i; }
};
const iterator l, r;
constexpr revrange(itr l_, itr r_) noexcept : l(l_ - 1), r(std::max(l_, r_) - 1) { }
constexpr iterator begin() const noexcept { return r; }
constexpr iterator end() const noexcept { return l; }
};
#line 2 "/Users/kodamankod/Desktop/Programming/Library/graph/network.cpp"
#include <cstddef>
#include <cstdint>
#line 8 "/Users/kodamankod/Desktop/Programming/Library/graph/network.cpp"
#include <type_traits>
template <class Edge>
class network {
public:
using vertex_type = typename Edge::vertex_type;
using edge_type = Edge;
using size_type = size_t;
class index_helper {
private:
const size_type M_size;
public:
explicit index_helper(const size_type size): M_size(size) { }
vertex_type operator [] (const size_type index) const {
return to_vertex(index);
}
vertex_type to_vertex(const size_type index) const {
return index + M_size;
}
size_type to_index(const vertex_type vert) const {
return vert - M_size;
}
};
protected:
std::vector<std::vector<edge_type>> M_graph;
public:
network() = default;
template <bool ReturnsIndex = true>
typename std::enable_if<ReturnsIndex, vertex_type>::type add_vertex() {
vertex_type res = M_graph.size();
M_graph.push_back({ });
return res;
}
template <bool ReturnsIndex = true>
typename std::enable_if<!ReturnsIndex, void>::type add_vertex() {
M_graph.push_back({ });
}
template <bool ReturnsIndices = true>
typename std::enable_if<ReturnsIndices, index_helper>::type
add_vertices(const size_type size) {
size_type cur = M_graph.size();
M_graph.resize(cur + size);
return index_helper(cur);
}
template <bool ReturnsIndices = true>
typename std::enable_if<!ReturnsIndices, void>::type
add_vertices(const size_type size) {
size_type cur = M_graph.size();
M_graph.resize(cur + size);
}
void add_edge(const edge_type &edge) {
M_graph[edge.source].push_back(edge);
}
template <class... Args>
void emplace_edge(const vertex_type src, Args&&... args) {
M_graph[src].emplace_back(src, std::forward<Args>(args)...);
}
std::vector<edge_type> &operator [] (const vertex_type vert) {
return M_graph[vert];
}
std::vector<edge_type> &at(const vertex_type vert) {
return M_graph.at(vert);
}
const std::vector<edge_type> &operator [] (const vertex_type vert) const {
return M_graph[vert];
}
const std::vector<edge_type> &at(const vertex_type vert) const {
return M_graph.at(vert);
}
const std::vector<std::vector<edge_type>> &get() const {
return M_graph;
}
size_type size() const {
return M_graph.size();
}
bool empty() const {
return M_graph.empty();
}
void clear() {
M_graph.clear();
M_graph.shrink_to_fit();
}
};
class base_edge {
public:
using vertex_type = uint32_t;
const vertex_type source, dest;
explicit base_edge(const vertex_type source, const vertex_type dest):
source(source), dest(dest)
{ }
base_edge reverse() {
return base_edge(dest, source);
}
};
template <class Flow>
class flow_edge: public base_edge {
public:
using vertex_type = typename base_edge::vertex_type;
using flow_type = Flow;
flow_type flow;
const flow_type capacity;
explicit flow_edge(const base_edge &edge, const flow_type capacity):
base_edge(edge), flow(0), capacity(capacity)
{ }
explicit flow_edge(const base_edge &edge, const flow_type flow, const flow_type capacity):
base_edge(edge), flow(flow), capacity(capacity)
{ }
explicit flow_edge(const vertex_type source, const vertex_type dest, const flow_type capacity):
base_edge(source, dest), flow(0), capacity(capacity)
{ }
explicit flow_edge(const vertex_type source, const vertex_type dest, const flow_type flow, const flow_type capacity):
base_edge(source, dest), flow(flow), capacity(capacity)
{ }
flow_edge reverse() const {
return flow_edge(static_cast<base_edge>(*this).reverse(), capacity);
}
};
template <class Flow, class Cost>
class flow_cost_edge: public flow_edge<Flow> {
public:
using vertex_type = typename flow_edge<Flow>::vertex_type;
using flow_type = typename flow_edge<Flow>::flow_type;
using cost_type = Cost;
const cost_type cost;
explicit flow_cost_edge(const flow_edge<Flow> &edge, const cost_type cost):
flow_edge<Flow>(edge), cost(cost)
{ }
explicit flow_cost_edge(const vertex_type source, const vertex_type dest, const flow_type capacity, const cost_type cost):
flow_edge<Flow>(source, dest, capacity), cost(cost)
{ }
explicit flow_cost_edge(const vertex_type source, const vertex_type dest, const flow_type flow, const flow_type capacity, const cost_type cost):
flow_edge<Flow>(source, dest, flow, capacity), cost(cost)
{ }
flow_cost_edge reverse() const {
return flow_cost_edge(static_cast<flow_edge<Flow>>(*this).reverse(), -cost);
}
};
/**
* @title Network
*/
#line 2 "/Users/kodamankod/Desktop/Programming/Library/graph/dinic.cpp"
#include <queue>
#line 5 "/Users/kodamankod/Desktop/Programming/Library/graph/dinic.cpp"
#line 2 "/Users/kodamankod/Desktop/Programming/Library/other/fix_point.cpp"
#line 4 "/Users/kodamankod/Desktop/Programming/Library/other/fix_point.cpp"
template <class Func>
struct fix_point: private Func {
explicit constexpr fix_point(Func &&func): Func(std::forward<Func>(func)) { }
template <class... Args>
constexpr decltype(auto) operator () (Args &&... args) const {
return Func::operator()(*this, std::forward<Args>(args)...);
}
};
template <class Func>
constexpr decltype(auto) make_fix_point(Func &&func) {
return fix_point<Func>(std::forward<Func>(func));
}
/**
* @title Lambda Recursion
*/
#line 8 "/Users/kodamankod/Desktop/Programming/Library/graph/dinic.cpp"
template <class Network>
class dinic {
public:
using network_type = Network;
using vertex_type = typename Network::vertex_type;
using edge_type = typename Network::edge_type;
using size_type = typename Network::size_type;
using flow_type = typename Network::edge_type::flow_type;
using height_type = uint32_t;
static_assert(std::is_integral<flow_type>::value, "invalid flow type :: non-integral");
private:
class residual_edge: public edge_type {
public:
const size_type rev;
const bool is_rev;
explicit residual_edge(const edge_type &edge, const size_type rev, const bool is_rev):
edge_type(edge), rev(rev), is_rev(is_rev)
{ }
};
class node_type {
public:
std::vector<residual_edge> edges;
height_type level;
size_type iter;
node_type() = default;
};
flow_type M_remain(const residual_edge &edge) {
return edge.capacity - edge.flow;
}
residual_edge &M_cur_edge(node_type &node) {
return node.edges[node.iter];
}
residual_edge &M_rev_edge(const residual_edge &edge) {
return M_graph[edge.dest].edges[edge.rev];
}
void M_bfs(const vertex_type source) {
for (auto &node: M_graph) {
node.level = M_graph.size() + 1;
}
M_graph[source].level = 0;
std::queue<vertex_type> queue;
queue.push(source);
while (!queue.empty()) {
const auto vert = queue.front();
queue.pop();
for (const auto &edge: M_graph[vert].edges) {
if (M_remain(edge) > 0) {
if (M_graph[edge.dest].level == M_graph.size() + 1) {
M_graph[edge.dest].level = M_graph[vert].level + 1;
queue.push(edge.dest);
}
}
}
}
}
std::vector<node_type> M_graph;
public:
dinic() = default;
explicit dinic(const network_type &net) {
const auto &graph = net.get();
M_graph.resize(graph.size());
for (size_type src = 0; src < graph.size(); ++src) {
for (const auto &edge: graph[src]) {
M_graph[src].edges.emplace_back(edge, M_graph[edge.dest].edges.size(), false);
M_graph[edge.dest].edges.emplace_back(edge.reverse(), M_graph[src].edges.size() - 1, true);
}
}
}
template <bool ValueOnly = true>
typename std::enable_if<ValueOnly, flow_type>::type
max_flow(const vertex_type source, const vertex_type sink) {
const auto dfs = make_fix_point([&](const auto dfs,
const vertex_type vert, const flow_type flow) -> flow_type {
if (vert == sink) return flow;
auto &node = M_graph[vert];
for (; node.iter < node.edges.size(); ++node.iter) {
auto &edge = M_cur_edge(node);
if (M_remain(edge) > 0 && node.level < M_graph[edge.dest].level) {
const auto push = dfs(edge.dest, std::min(flow, M_remain(edge)));
if (push > 0) {
edge.flow += push;
M_rev_edge(edge).flow -= push;
return push;
}
}
}
return 0;
});
flow_type max_capacity = 0;
for (auto &node: M_graph) {
for (auto &edge: node.edges) {
// if (!edge.is_rev) edge.flow = 0;
// else edge.flow = edge.capacity;
max_capacity = std::max(max_capacity, edge.capacity);
}
}
flow_type flow = 0;
while (true) {
M_bfs(source);
if (M_graph[sink].level == M_graph.size() + 1) {
return flow;
}
for (auto &node: M_graph) {
node.iter = 0;
}
flow_type push;
while ((push = dfs(source, max_capacity)) > 0) {
flow += push;
}
}
return flow;
}
template <bool ValueOnly = true>
typename std::enable_if<!ValueOnly, std::pair<flow_type, network_type>>::type
max_flow(const vertex_type source, const vertex_type sink) {
const auto flow = max_flow<true>(source, sink);
network_type graph;
graph.template add_vertices <false>(M_graph.size());
for (size_type index = 0; index < M_graph.size(); ++index) {
for (const auto &edge: M_graph[index].edges) {
if (!edge.is_rev) {
graph.add_edge(static_cast<edge_type>(edge));
}
}
}
return std::make_pair(flow, std::move(graph));
}
};
/**
* @title Dinic
*/
#line 57 "main.cpp"
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
constexpr i32 inf32 = (i32(1) << 30) - 1;
constexpr i64 inf64 = (i64(1) << 62) - 1;
int main() {
i32 H, W;
std::cin >> H >> W;
std::vector<i32> A(H), B(W);
for (auto &x: A) {
std::cin >> x;
}
for (auto &x: B) {
std::cin >> x;
}
std::vector<std::vector<char>> ans(H, std::vector<char>(W, '.'));
for (auto i: range(0, H)) {
std::vector<std::vector<i32>> vec(H);
for (auto j: range(0, W)) {
if (B[j] > 0) {
vec[B[j] - 1].push_back(j);
}
}
for (auto j: revrange(0, H)) {
for (auto x: vec[j]) {
if (A[i] > 0) {
ans[i][x] = 'o';
--A[i];
--B[x];
}
}
}
if (A[i] > 0) {
std::cout << ":(\n";
return 0;
}
}
if (*std::max_element(B.cbegin(), B.cend()) > 0) {
std::cout << ":(\n";
return 0;
}
i32 K;
std::cin >> K;
while (K--) {
i32 x, y;
std::cin >> x >> y;
--x; --y;
if (ans[x][y] == 'o') {
++A[x];
++B[y];
}
ans[x][y] = 'x';
}
network<flow_edge<i32>> graph;
const auto S = graph.add_vertex();
const auto T = graph.add_vertex();
const auto left = graph.add_vertices(H);
const auto right = graph.add_vertices(W);
for (auto i: range(0, H)) {
if (A[i] > 0) {
graph.emplace_edge(S, left[i], A[i]);
}
}
for (auto j: range(0, W)) {
if (B[j] > 0) {
graph.emplace_edge(right[j], T, B[j]);
}
}
for (auto i: range(0, H)) {
for (auto j: range(0, W)) {
if (ans[i][j] == '.') {
graph.emplace_edge(left[i], right[j], 1);
}
if (ans[i][j] == 'o') {
graph.emplace_edge(left[i], right[j], 1, 1);
}
}
}
const auto [flow, result] = dinic(graph).max_flow<false>(S, T);
if (flow < std::accumulate(A.cbegin(), A.cend(), 0)) {
std::cout << ":(\n";
return 0;
}
std::cout << "Yay!\n";
for (auto i: range(0, H)) {
for (const auto &e: result[left[i]]) {
if (e.flow > 0) {
ans[i][right.to_index(e.dest)] = 'o';
}
}
}
for (auto &vec: ans) {
for (auto x: vec) {
std::cout << x;
}
std::cout << '\n';
}
return 0;
}
KoD