結果
問題 |
No.1123 Afforestation
|
ユーザー |
![]() |
提出日時 | 2020-07-23 23:38:56 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,897 ms / 2,500 ms |
コード長 | 11,563 bytes |
コンパイル時間 | 2,190 ms |
コンパイル使用メモリ | 102,612 KB |
最終ジャッジ日時 | 2025-01-12 04:44:26 |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 90 |
ソースコード
#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1123" #line 2 "/Users/kodamankod/Desktop/Programming/Library/graph/network.cpp" #include <cstddef> #include <cstdint> #include <vector> #include <numeric> #include <utility> #include <type_traits> template <class Edge> class network { public: using vertex_type = typename Edge::vertex_type; using edge_type = Edge; using size_type = size_t; class index_helper { private: const size_type M_size; public: explicit index_helper(const size_type size): M_size(size) { } vertex_type operator [] (const size_type index) const { return to_vertex(index); } vertex_type to_vertex(const size_type index) const { return index + M_size; } size_type to_index(const vertex_type vert) const { return vert - M_size; } }; protected: std::vector<std::vector<edge_type>> M_graph; public: network() = default; template <bool ReturnsIndex = true> typename std::enable_if<ReturnsIndex, vertex_type>::type add_vertex() { vertex_type res = M_graph.size(); M_graph.push_back({ }); return res; } template <bool ReturnsIndex = true> typename std::enable_if<!ReturnsIndex, void>::type add_vertex() { M_graph.push_back({ }); } template <bool ReturnsIndices = true> typename std::enable_if<ReturnsIndices, index_helper>::type add_vertices(const size_type size) { size_type cur = M_graph.size(); M_graph.resize(cur + size); return index_helper(cur); } template <bool ReturnsIndices = true> typename std::enable_if<!ReturnsIndices, void>::type add_vertices(const size_type size) { size_type cur = M_graph.size(); M_graph.resize(cur + size); } void add_edge(const edge_type &edge) { M_graph[edge.source].push_back(edge); } template <class... Args> void emplace_edge(const vertex_type src, Args&&... args) { M_graph[src].emplace_back(src, std::forward<Args>(args)...); } std::vector<edge_type> &operator [] (const vertex_type vert) { return M_graph[vert]; } std::vector<edge_type> &at(const vertex_type vert) { return M_graph.at(vert); } const std::vector<edge_type> &operator [] (const vertex_type vert) const { return M_graph[vert]; } const std::vector<edge_type> &at(const vertex_type vert) const { return M_graph.at(vert); } const std::vector<std::vector<edge_type>> &get() const { return M_graph; } size_type size() const { return M_graph.size(); } bool empty() const { return M_graph.empty(); } void clear() { M_graph.clear(); M_graph.shrink_to_fit(); } }; class base_edge { public: using vertex_type = uint32_t; const vertex_type source, dest; explicit base_edge(const vertex_type source, const vertex_type dest): source(source), dest(dest) { } base_edge reverse() { return base_edge(dest, source); } }; template <class Flow> class flow_edge: public base_edge { public: using vertex_type = typename base_edge::vertex_type; using flow_type = Flow; flow_type flow; const flow_type capacity; explicit flow_edge(const base_edge &edge, const flow_type capacity): base_edge(edge), flow(0), capacity(capacity) { } explicit flow_edge(const base_edge &edge, const flow_type flow, const flow_type capacity): base_edge(edge), flow(flow), capacity(capacity) { } explicit flow_edge(const vertex_type source, const vertex_type dest, const flow_type capacity): base_edge(source, dest), flow(0), capacity(capacity) { } explicit flow_edge(const vertex_type source, const vertex_type dest, const flow_type flow, const flow_type capacity): base_edge(source, dest), flow(flow), capacity(capacity) { } flow_edge reverse() const { return flow_edge(static_cast<base_edge>(*this).reverse(), capacity - flow, capacity); } }; template <class Flow, class Cost> class flow_cost_edge: public flow_edge<Flow> { public: using vertex_type = typename flow_edge<Flow>::vertex_type; using flow_type = typename flow_edge<Flow>::flow_type; using cost_type = Cost; const cost_type cost; explicit flow_cost_edge(const flow_edge<Flow> &edge, const cost_type cost): flow_edge<Flow>(edge), cost(cost) { } explicit flow_cost_edge(const vertex_type source, const vertex_type dest, const flow_type capacity, const cost_type cost): flow_edge<Flow>(source, dest, capacity), cost(cost) { } explicit flow_cost_edge(const vertex_type source, const vertex_type dest, const flow_type flow, const flow_type capacity, const cost_type cost): flow_edge<Flow>(source, dest, flow, capacity), cost(cost) { } flow_cost_edge reverse() const { return flow_cost_edge(static_cast<flow_edge<Flow>>(*this).reverse(), -cost); } }; /** * @title Network */ #line 2 "/Users/kodamankod/Desktop/Programming/Library/graph/dinic.cpp" #include <queue> #include <algorithm> #line 2 "/Users/kodamankod/Desktop/Programming/Library/other/fix_point.cpp" #line 4 "/Users/kodamankod/Desktop/Programming/Library/other/fix_point.cpp" template <class Func> struct fix_point: private Func { explicit constexpr fix_point(Func &&func): Func(std::forward<Func>(func)) { } template <class... Args> constexpr decltype(auto) operator () (Args &&... args) const { return Func::operator()(*this, std::forward<Args>(args)...); } }; template <class Func> constexpr decltype(auto) make_fix_point(Func &&func) { return fix_point<Func>(std::forward<Func>(func)); } /** * @title Lambda Recursion */ #line 8 "/Users/kodamankod/Desktop/Programming/Library/graph/dinic.cpp" template <class Network> class dinic { public: using network_type = Network; using vertex_type = typename Network::vertex_type; using edge_type = typename Network::edge_type; using size_type = typename Network::size_type; using flow_type = typename Network::edge_type::flow_type; using height_type = uint32_t; static_assert(std::is_integral<flow_type>::value, "invalid flow type :: non-integral"); private: class residual_edge: public edge_type { public: const size_type rev; const bool is_rev; explicit residual_edge(const edge_type &edge, const size_type rev, const bool is_rev): edge_type(edge), rev(rev), is_rev(is_rev) { } }; class node_type { public: std::vector<residual_edge> edges; height_type level; size_type iter; node_type() = default; }; flow_type M_remain(const residual_edge &edge) { return edge.capacity - edge.flow; } residual_edge &M_cur_edge(node_type &node) { return node.edges[node.iter]; } residual_edge &M_rev_edge(const residual_edge &edge) { return M_graph[edge.dest].edges[edge.rev]; } void M_bfs(const vertex_type source) { for (auto &node: M_graph) { node.level = M_graph.size() + 1; } M_graph[source].level = 0; std::queue<vertex_type> queue; queue.push(source); while (!queue.empty()) { const auto vert = queue.front(); queue.pop(); for (const auto &edge: M_graph[vert].edges) { if (M_remain(edge) > 0) { if (M_graph[edge.dest].level == M_graph.size() + 1) { M_graph[edge.dest].level = M_graph[vert].level + 1; queue.push(edge.dest); } } } } } std::vector<node_type> M_graph; public: dinic() = default; explicit dinic(const network_type &net) { const auto &graph = net.get(); M_graph.resize(graph.size()); for (size_type src = 0; src < graph.size(); ++src) { for (const auto &edge: graph[src]) { M_graph[src].edges.emplace_back(edge, M_graph[edge.dest].edges.size(), false); M_graph[edge.dest].edges.emplace_back(edge.reverse(), M_graph[src].edges.size() - 1, true); } } } template <bool ValueOnly = true> typename std::enable_if<ValueOnly, flow_type>::type max_flow(const vertex_type source, const vertex_type sink, const bool initialize_edges = false) { const auto dfs = make_fix_point([&](const auto dfs, const vertex_type vert, const flow_type flow) -> flow_type { if (vert == sink) return flow; auto &node = M_graph[vert]; for (; node.iter < node.edges.size(); ++node.iter) { auto &edge = M_cur_edge(node); if (M_remain(edge) > 0 && node.level < M_graph[edge.dest].level) { const auto push = dfs(edge.dest, std::min(flow, M_remain(edge))); if (push > 0) { edge.flow += push; M_rev_edge(edge).flow -= push; return push; } } } return 0; }); flow_type max_capacity = 0; for (auto &node: M_graph) { for (auto &edge: node.edges) { if (initialize_edges) { if (!edge.is_rev) edge.flow = 0; else edge.flow = edge.capacity; } max_capacity = std::max(max_capacity, edge.capacity); } } flow_type flow = 0; while (true) { M_bfs(source); if (M_graph[sink].level == M_graph.size() + 1) { return flow; } for (auto &node: M_graph) { node.iter = 0; } flow_type push; while ((push = dfs(source, max_capacity)) > 0) { flow += push; } } return flow; } template <bool ValueOnly = true> typename std::enable_if<!ValueOnly, std::pair<flow_type, network_type>>::type max_flow(const vertex_type source, const vertex_type sink, const bool initialize_edges = false) { const auto flow = max_flow<true>(source, sink, initialize_edges); network_type graph; graph.template add_vertices <false>(M_graph.size()); for (size_type index = 0; index < M_graph.size(); ++index) { for (const auto &edge: M_graph[index].edges) { if (!edge.is_rev) { graph.add_edge(static_cast<edge_type>(edge)); } } } return std::make_pair(flow, std::move(graph)); } }; /** * @title Dinic */ #line 6 "main.cpp" #line 9 "main.cpp" #include <iostream> #line 11 "main.cpp" int main() { size_t H, W; std::cin >> H >> W; std::vector<uint32_t> A(H), B(W); for (auto &x: A) { std::cin >> x; } for (auto &x: B) { std::cin >> x; } const uint32_t sumA = std::accumulate(A.cbegin(), A.cend(), uint32_t(0)); const uint32_t sumB = std::accumulate(B.cbegin(), B.cend(), uint32_t(0)); if (sumA != sumB) { std::cout << ":(\n"; return 0; } size_t K; std::cin >> K; std::vector<std::vector<char>> ans(H, std::vector<char>(W, '.')); while (K--) { size_t x, y; std::cin >> x >> y; --x; --y; ans[x][y] = 'x'; } network<flow_edge<uint32_t>> graph; const auto S = graph.add_vertex(); const auto T = graph.add_vertex(); const auto left = graph.add_vertices(H); const auto right = graph.add_vertices(W); for (size_t i = 0; i < H; ++i) { graph.emplace_edge(S, left[i], A[i]); } for (size_t j = 0; j < W; ++j) { graph.emplace_edge(right[j], T, B[j]); } for (size_t i = 0; i < H; ++i) { for (size_t j = 0; j < W; ++j) { if (ans[i][j] != 'x') { graph.emplace_edge(left[i], right[j], 1); } } } const auto [flow, result] = dinic(graph).max_flow<false>(S, T); if (flow != sumA) { std::cout << ":(\n"; return 0; } std::cout << "Yay!\n"; for (size_t i = 0; i < H; ++i) { for (const auto &e: result[left[i]]) { if (e.flow > 0) { ans[i][right.to_index(e.dest)] = 'o'; } } } for (const auto &vec: ans) { for (auto x: vec) { std::cout << x; } std::cout << '\n'; } return 0; }