結果
問題 | No.1123 Afforestation |
ユーザー | KoD |
提出日時 | 2020-07-23 23:48:40 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,220 ms / 2,500 ms |
コード長 | 16,420 bytes |
コンパイル時間 | 1,514 ms |
コンパイル使用メモリ | 110,884 KB |
実行使用メモリ | 392,576 KB |
最終ジャッジ日時 | 2024-06-23 23:01:12 |
合計ジャッジ時間 | 21,628 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 3 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 4 ms
6,944 KB |
testcase_04 | AC | 23 ms
16,640 KB |
testcase_05 | AC | 277 ms
101,504 KB |
testcase_06 | AC | 1,220 ms
392,576 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 3 ms
5,376 KB |
testcase_11 | AC | 10 ms
8,448 KB |
testcase_12 | AC | 131 ms
52,224 KB |
testcase_13 | AC | 1,196 ms
392,576 KB |
testcase_14 | AC | 2 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 3 ms
6,940 KB |
testcase_18 | AC | 4 ms
6,940 KB |
testcase_19 | AC | 24 ms
17,024 KB |
testcase_20 | AC | 345 ms
100,992 KB |
testcase_21 | AC | 1,190 ms
392,192 KB |
testcase_22 | AC | 1,194 ms
391,680 KB |
testcase_23 | AC | 1,181 ms
392,576 KB |
testcase_24 | AC | 1,205 ms
392,576 KB |
testcase_25 | AC | 1,184 ms
392,448 KB |
testcase_26 | AC | 2 ms
6,944 KB |
testcase_27 | AC | 2 ms
6,948 KB |
testcase_28 | AC | 3 ms
6,940 KB |
testcase_29 | AC | 3 ms
6,944 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 3 ms
6,940 KB |
testcase_32 | AC | 2 ms
6,944 KB |
testcase_33 | AC | 3 ms
6,948 KB |
testcase_34 | AC | 4 ms
6,944 KB |
testcase_35 | AC | 4 ms
6,940 KB |
testcase_36 | AC | 2 ms
6,940 KB |
testcase_37 | AC | 2 ms
6,940 KB |
testcase_38 | AC | 2 ms
6,940 KB |
testcase_39 | AC | 4 ms
6,940 KB |
testcase_40 | AC | 4 ms
6,940 KB |
testcase_41 | AC | 4 ms
6,944 KB |
testcase_42 | AC | 11 ms
8,320 KB |
testcase_43 | AC | 23 ms
17,152 KB |
testcase_44 | AC | 46 ms
25,344 KB |
testcase_45 | AC | 60 ms
25,344 KB |
testcase_46 | AC | 62 ms
27,776 KB |
testcase_47 | AC | 60 ms
27,776 KB |
testcase_48 | AC | 2 ms
6,940 KB |
testcase_49 | AC | 2 ms
6,940 KB |
testcase_50 | AC | 4 ms
6,944 KB |
testcase_51 | AC | 4 ms
6,944 KB |
testcase_52 | AC | 2 ms
6,940 KB |
testcase_53 | AC | 2 ms
6,944 KB |
testcase_54 | AC | 2 ms
6,940 KB |
testcase_55 | AC | 4 ms
6,944 KB |
testcase_56 | AC | 4 ms
6,944 KB |
testcase_57 | AC | 4 ms
6,940 KB |
testcase_58 | AC | 10 ms
8,192 KB |
testcase_59 | AC | 22 ms
17,152 KB |
testcase_60 | AC | 52 ms
25,600 KB |
testcase_61 | AC | 58 ms
25,344 KB |
testcase_62 | AC | 58 ms
27,776 KB |
testcase_63 | AC | 58 ms
27,776 KB |
testcase_64 | AC | 2 ms
6,944 KB |
testcase_65 | AC | 3 ms
6,940 KB |
testcase_66 | AC | 3 ms
6,944 KB |
testcase_67 | AC | 2 ms
6,940 KB |
testcase_68 | AC | 4 ms
6,944 KB |
testcase_69 | AC | 7 ms
6,948 KB |
testcase_70 | AC | 10 ms
8,192 KB |
testcase_71 | AC | 22 ms
17,152 KB |
testcase_72 | AC | 2 ms
6,940 KB |
testcase_73 | AC | 2 ms
6,944 KB |
testcase_74 | AC | 2 ms
6,940 KB |
testcase_75 | AC | 2 ms
6,940 KB |
testcase_76 | AC | 2 ms
6,940 KB |
testcase_77 | AC | 2 ms
6,944 KB |
testcase_78 | AC | 2 ms
6,940 KB |
testcase_79 | AC | 2 ms
6,940 KB |
testcase_80 | AC | 2 ms
6,940 KB |
testcase_81 | AC | 3 ms
6,944 KB |
testcase_82 | AC | 2 ms
6,940 KB |
testcase_83 | AC | 2 ms
6,944 KB |
testcase_84 | AC | 1,028 ms
392,576 KB |
testcase_85 | AC | 1,038 ms
392,448 KB |
testcase_86 | AC | 2 ms
6,944 KB |
testcase_87 | AC | 3 ms
6,940 KB |
testcase_88 | AC | 568 ms
392,576 KB |
testcase_89 | AC | 568 ms
392,448 KB |
testcase_90 | AC | 2 ms
6,944 KB |
testcase_91 | AC | 2 ms
6,940 KB |
testcase_92 | AC | 2 ms
6,940 KB |
ソースコード
#line 1 "test/push_relabel.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1123" #line 2 "graph/network.cpp" #include <cstddef> #include <cstdint> #include <vector> #include <numeric> #include <utility> #include <type_traits> template <class Edge> class network { public: using vertex_type = typename Edge::vertex_type; using edge_type = Edge; using size_type = size_t; class index_helper { private: const size_type M_stuff, M_size; public: explicit index_helper(const size_type stuff, const size_type size): M_stuff(stuff), M_size(size) { } vertex_type operator [] (const size_type index) const { return to_vertex(index); } vertex_type to_vertex(const size_type index) const { return index + M_stuff; } size_type to_index(const vertex_type vert) const { return vert - M_stuff; } size_type size() const { return M_size; } }; protected: std::vector<std::vector<edge_type>> M_graph; public: network() = default; template <bool ReturnsIndex = true> typename std::enable_if<ReturnsIndex, vertex_type>::type add_vertex() { vertex_type res = M_graph.size(); M_graph.push_back({ }); return res; } template <bool ReturnsIndex = true> typename std::enable_if<!ReturnsIndex, void>::type add_vertex() { M_graph.push_back({ }); } template <bool ReturnsIndices = true> typename std::enable_if<ReturnsIndices, index_helper>::type add_vertices(const size_type size) { size_type cur = M_graph.size(); M_graph.resize(cur + size); return index_helper(cur, size); } template <bool ReturnsIndices = true> typename std::enable_if<!ReturnsIndices, void>::type add_vertices(const size_type size) { size_type cur = M_graph.size(); M_graph.resize(cur + size); } void add_edge(const edge_type &edge) { M_graph[edge.source].push_back(edge); } template <class... Args> void emplace_edge(const vertex_type src, Args&&... args) { M_graph[src].emplace_back(src, std::forward<Args>(args)...); } std::vector<edge_type> &operator [] (const vertex_type vert) { return M_graph[vert]; } std::vector<edge_type> &at(const vertex_type vert) { return M_graph.at(vert); } const std::vector<edge_type> &operator [] (const vertex_type vert) const { return M_graph[vert]; } const std::vector<edge_type> &at(const vertex_type vert) const { return M_graph.at(vert); } const std::vector<std::vector<edge_type>> &get() const { return M_graph; } size_type size() const { return M_graph.size(); } bool empty() const { return M_graph.empty(); } void clear() { M_graph.clear(); M_graph.shrink_to_fit(); } }; class base_edge { public: using vertex_type = uint32_t; const vertex_type source, dest; explicit base_edge(const vertex_type source, const vertex_type dest): source(source), dest(dest) { } base_edge reverse() { return base_edge(dest, source); } }; template <class Flow> class flow_edge: public base_edge { public: using vertex_type = typename base_edge::vertex_type; using flow_type = Flow; flow_type flow; const flow_type capacity; explicit flow_edge(const base_edge &edge, const flow_type capacity): base_edge(edge), flow(0), capacity(capacity) { } explicit flow_edge(const base_edge &edge, const flow_type flow, const flow_type capacity): base_edge(edge), flow(flow), capacity(capacity) { } explicit flow_edge(const vertex_type source, const vertex_type dest, const flow_type capacity): base_edge(source, dest), flow(0), capacity(capacity) { } explicit flow_edge(const vertex_type source, const vertex_type dest, const flow_type flow, const flow_type capacity): base_edge(source, dest), flow(flow), capacity(capacity) { } flow_edge reverse() const { return flow_edge(static_cast<base_edge>(*this).reverse(), capacity - flow, capacity); } }; template <class Flow, class Cost> class flow_cost_edge: public flow_edge<Flow> { public: using vertex_type = typename flow_edge<Flow>::vertex_type; using flow_type = typename flow_edge<Flow>::flow_type; using cost_type = Cost; const cost_type cost; explicit flow_cost_edge(const flow_edge<Flow> &edge, const cost_type cost): flow_edge<Flow>(edge), cost(cost) { } explicit flow_cost_edge(const vertex_type source, const vertex_type dest, const flow_type capacity, const cost_type cost): flow_edge<Flow>(source, dest, capacity), cost(cost) { } explicit flow_cost_edge(const vertex_type source, const vertex_type dest, const flow_type flow, const flow_type capacity, const cost_type cost): flow_edge<Flow>(source, dest, flow, capacity), cost(cost) { } flow_cost_edge reverse() const { return flow_cost_edge(static_cast<flow_edge<Flow>>(*this).reverse(), -cost); } }; /** * @title Network */ #line 2 "graph/push_relabel.cpp" #include <queue> #include <algorithm> #line 7 "graph/push_relabel.cpp" namespace push_relabel_detail { class stack_helper { private: const size_t M_size; std::vector<size_t> M_stack; public: explicit stack_helper(const size_t size): M_size(size), M_stack(size * 2) { clear(); } size_t top(const size_t height) const { return M_stack[M_size + height]; } bool empty(const size_t height) const { return M_stack[M_size + height] == M_size + height; } void pop(const size_t height) { M_stack[M_size + height] = M_stack[M_stack[M_size + height]]; } void push(const size_t height, const size_t node) { M_stack[node] = M_stack[M_size + height]; M_stack[M_size + height] = node; } void clear() { std::iota(M_stack.begin() + M_size, M_stack.end(), M_size); } }; class list_helper { private: const size_t M_size; std::vector<std::pair<size_t, size_t>> M_list; public: explicit list_helper(const size_t size): M_size(size), M_list(size * 2) { clear(); } bool empty(const size_t height) { return M_list[M_size + height].second == M_size + height; } bool more_than_one(const size_t height) { return M_list[M_size + height].first != M_list[M_size + height].second; } void insert(const size_t height, const size_t node) { M_list[node].first = M_list[M_size + height].first; M_list[node].second = M_size + height; M_list[M_list[M_size + height].first].second = node; M_list[M_size + height].first = node; } void erase(const size_t node) { M_list[M_list[node].first].second = M_list[node].second; M_list[M_list[node].second].first = M_list[node].first; } void clear() { for (size_t index = M_size; index < M_size * 2; ++index) { M_list[index].first = M_list[index].second = index; } } void clear(const size_t height) { const size_t index = M_size + height; M_list[index].first = M_list[index].second = index; } template <class Func> void apply_all(const size_t height, Func &&func) { size_t index = M_list[M_size + height].second; while (index < M_size) { func(index); index = M_list[index].second; } } }; }; template <class Network> class push_relabel { public: using network_type = Network; using vertex_type = typename Network::vertex_type; using edge_type = typename Network::edge_type; using size_type = typename Network::size_type; using flow_type = typename Network::edge_type::flow_type; using height_type = uint32_t; static_assert(std::is_integral<flow_type>::value, "invalid flow type :: non-integral"); private: class residual_edge: public edge_type { public: const size_type rev; const bool is_rev; explicit residual_edge(const edge_type &edge, const size_type rev, const bool is_rev): edge_type(edge), rev(rev), is_rev(is_rev) { } }; class node_type { public: std::vector<residual_edge> edges; flow_type excess; height_type height; size_type iter; node_type() = default; }; flow_type M_remain(const residual_edge &edge) { return edge.capacity - edge.flow; } residual_edge &M_cur_edge(node_type &node) { return node.edges[node.iter]; } residual_edge &M_rev_edge(const residual_edge &edge) { return M_graph[edge.dest].edges[edge.rev]; } void M_push(node_type &node, residual_edge &edge) { const auto flow = std::min(node.excess, M_remain(edge)); edge.flow += flow; node.excess -= flow; M_rev_edge(edge).flow -= flow; M_graph[edge.dest].excess += flow; } void M_relabel(node_type &node) { height_type min = M_graph.size() + 1; for (const auto &edge: node.edges) { if (M_remain(edge) > 0 && min > M_graph[edge.dest].height + 1) { min = M_graph[edge.dest].height + 1; } } node.height = min; } void M_reverse_bfs(const vertex_type source) { for (auto &node: M_graph) { node.height = M_graph.size() + 1; } M_graph[source].height = 0; std::queue<vertex_type> queue; queue.push(source); while (!queue.empty()) { const auto vert = queue.front(); queue.pop(); for (const auto &edge: M_graph[vert].edges) { if (M_remain(M_rev_edge(edge)) > 0) { if (M_graph[edge.dest].height == M_graph.size() + 1) { M_graph[edge.dest].height = M_graph[vert].height + 1; queue.push(edge.dest); } } } } } std::vector<node_type> M_graph; public: push_relabel() = default; explicit push_relabel(const network_type &net) { const auto &graph = net.get(); M_graph.resize(graph.size()); for (size_type src = 0; src < graph.size(); ++src) { for (const auto &edge: graph[src]) { M_graph[src].edges.emplace_back(edge, M_graph[edge.dest].edges.size(), false); M_graph[edge.dest].edges.emplace_back(edge.reverse(), M_graph[src].edges.size() - 1, true); } } } template <bool ValueOnly = true> typename std::enable_if<ValueOnly, flow_type>::type max_flow(const vertex_type source, const vertex_type sink, const bool initialize_edges = false) { push_relabel_detail::stack_helper active(M_graph.size()); push_relabel_detail::list_helper level(M_graph.size()); height_type min_gap, max_active; for (auto &node: M_graph) { node.excess = 0; node.iter = 0; for (auto &edge: node.edges) { if (initialize_edges) { if (!edge.is_rev) edge.flow = 0; else edge.flow = edge.capacity; } } } M_reverse_bfs(sink); if (M_graph[source].height == M_graph.size() + 1) { return 0; } for (auto &edge: M_graph[source].edges) { M_graph[source].excess += M_remain(edge); M_push(M_graph[source], edge); } M_graph[source].height = M_graph.size(); min_gap = M_graph.size(); max_active = 0; for (size_type index = 0; index < M_graph.size(); ++index) { const auto &node = M_graph[index]; if (node.height < M_graph.size()) { if (node.excess > 0 && index != sink) { active.push(node.height, index); max_active = std::max(max_active, node.height); } level.insert(node.height, index); } } for (size_type index = 0; index < M_graph.size(); ++index) { if (level.empty(index)) { min_gap = index; break; } } while (max_active > 0) { if (active.empty(max_active)) { --max_active; continue; } const auto vert = active.top(max_active); auto &node = M_graph[vert]; active.pop(max_active); while (true) { auto &edge = M_cur_edge(node); const auto &dest = M_graph[edge.dest]; if (M_remain(edge) > 0 && node.height == dest.height + 1) { if (dest.excess == 0 && edge.dest != sink) { active.push(dest.height, edge.dest); max_active = std::max(max_active, dest.height); } M_push(node, edge); if (node.excess == 0) { break; } } node.iter++; if (node.iter == node.edges.size()) { node.iter = 0; if (level.more_than_one(node.height)) { level.erase(vert); M_relabel(node); if (node.height > min_gap) { node.height = M_graph.size() + 1; break; } if (node.height == min_gap) { min_gap++; } level.insert(node.height, vert); } else { const height_type old_gap = min_gap; min_gap = node.height; for (height_type index = node.height; index < old_gap; ++index) { level.apply_all(index, [&](const vertex_type vert) { M_graph[vert].height = M_graph.size() + 1; }); level.clear(index); } break; } } } max_active = std::min(max_active, min_gap - 1); } return M_graph[sink].excess; } template <bool ValueOnly = true> typename std::enable_if<!ValueOnly, std::pair<flow_type, network_type>>::type max_flow(const vertex_type source, const vertex_type sink, const bool initialize_edges = false) { const auto flow = max_flow<true>(source, sink, initialize_edges); std::queue<vertex_type> active; M_reverse_bfs(source); for (vertex_type index = 0; index < M_graph.size(); ++index) { const auto &node = M_graph[index]; if (node.excess > 0 && node.height < M_graph.size() && index != sink) { active.push(index); } } while (!active.empty()) { auto &node = M_graph[active.front()]; active.pop(); while (node.excess > 0) { auto &edge = M_cur_edge(node); const auto &dest = M_graph[edge.dest]; if (M_remain(edge) > 0 && node.height == dest.height + 1) { if (dest.excess == 0 && edge.dest != source) { active.push(edge.dest); } M_push(node, edge); if (node.excess == 0) { break; } } node.iter++; if (node.iter == node.edges.size()) { node.iter = 0; M_relabel(node); } } } network_type graph; graph.template add_vertices <false>(M_graph.size()); for (size_type index = 0; index < M_graph.size(); ++index) { for (const auto &edge: M_graph[index].edges) { if (!edge.is_rev) { graph.add_edge(static_cast<edge_type>(edge)); } } } return std::make_pair(flow, std::move(graph)); } }; /** * @title Push Relabel */ #line 6 "test/push_relabel.test.cpp" #line 9 "test/push_relabel.test.cpp" #include <iostream> #line 11 "test/push_relabel.test.cpp" int main() { size_t H, W; std::cin >> H >> W; std::vector<uint32_t> A(H), B(W); for (auto &x: A) { std::cin >> x; } for (auto &x: B) { std::cin >> x; } const auto sumA = std::accumulate(A.cbegin(), A.cend(), uint32_t(0)); const auto sumB = std::accumulate(B.cbegin(), B.cend(), uint32_t(0)); if (sumA != sumB) { std::cout << ":(\n"; return 0; } size_t K; std::cin >> K; std::vector<std::vector<char>> ans(H, std::vector<char>(W, '.')); while (K--) { size_t x, y; std::cin >> x >> y; --x; --y; ans[x][y] = 'x'; } network<flow_edge<uint32_t>> graph; const auto S = graph.add_vertex(); const auto T = graph.add_vertex(); const auto left = graph.add_vertices(H); const auto right = graph.add_vertices(W); for (size_t i = 0; i < H; ++i) { graph.emplace_edge(S, left[i], A[i]); } for (size_t j = 0; j < W; ++j) { graph.emplace_edge(right[j], T, B[j]); } for (size_t i = 0; i < H; ++i) { for (size_t j = 0; j < W; ++j) { if (ans[i][j] != 'x') { graph.emplace_edge(left[i], right[j], 1); } } } const auto [flow, result] = push_relabel(graph).max_flow<false>(S, T); if (flow != sumA) { std::cout << ":(\n"; return 0; } std::cout << "Yay!\n"; for (size_t i = 0; i < H; ++i) { for (const auto &e: result[left[i]]) { if (e.flow > 0) { ans[i][right.to_index(e.dest)] = 'o'; } } } for (const auto &vec: ans) { for (auto x: vec) { std::cout << x; } std::cout << '\n'; } return 0; }