結果
問題 |
No.194 フィボナッチ数列の理解(1)
|
ユーザー |
![]() |
提出日時 | 2020-07-25 19:44:35 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 636 ms / 5,000 ms |
コード長 | 1,856 bytes |
コンパイル時間 | 90 ms |
コンパイル使用メモリ | 12,672 KB |
実行使用メモリ | 50,304 KB |
最終ジャッジ日時 | 2024-06-27 13:56:33 |
合計ジャッジ時間 | 6,334 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 37 |
ソースコード
from itertools import accumulate MOD = 1000000007 N, K = map(int, input().split()) A = list(map(int, input().split())) C = [0] + list(accumulate(A)) if N <= 10000 and K <= 1000000: res = [0 for _ in range(K)] for i in range(N): res[i] = A[i] res[N] = sum(A) for i in range(N + 1, K): res[i] = res[i - 1] * 2 - res[i - N - 1] res[i] %= MOD print(res[-1], sum(res) % MOD) else: def inc(coeff, base): n = len(coeff) res = [0 for _ in range(n)] res[0] = coeff[n - 1] * base[0] for i in range(1, n): res[i] = coeff[i - 1] + coeff[n - 1] * base[i] res[i] %= MOD return res def dec(coeff, base): n = len(coeff) res = [0 for _ in range(n)] res[n - 1] = coeff[0] * pow(base[0], MOD - 2, MOD) for i in range(n - 1)[::-1]: res[i] = coeff[i + 1] - res[n - 1] * base[i + 1] res[i] %= MOD return res def dub(coeff, base): n = len(coeff) res = [0 for _ in range(n)] tmp = [coeff] for i in range(n - 1): tmp.append(inc(tmp[-1], base)) for i in range(n): for j in range(n): res[i] += tmp[0][j] * tmp[j][i] res[i] %= MOD return res def solve(base, arr, exp): coeff = base[:] n = len(coeff) for _ in range(n): coeff = dec(coeff, base) for bit in range(exp.bit_length())[::-1]: coeff = dub(coeff, base) if (exp >> bit) & 1: coeff = inc(coeff, base) return sum([coeff[i] * arr[i] for i in range(n)]) % MOD base = [1 for _ in range(N)] F = solve(base, A, K - 1) base = [0 for _ in range(N + 1)] base[0] = -1 base[-1] = 2 S = solve(base, C, K) print(F, S)