結果

問題 No.1140 EXPotentiaLLL!
ユーザー eSeFeSeF
提出日時 2020-07-26 20:32:52
言語 C#(csc)
(csc 3.9.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 15,315 bytes
コンパイル時間 2,176 ms
コンパイル使用メモリ 114,944 KB
実行使用メモリ 31,616 KB
最終ジャッジ日時 2024-06-28 19:21:36
合計ジャッジ時間 20,733 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,904 ms
31,232 KB
testcase_01 TLE -
testcase_02 TLE -
testcase_03 AC 1,578 ms
31,488 KB
testcase_04 AC 1,268 ms
31,488 KB
testcase_05 AC 1,910 ms
31,488 KB
testcase_06 AC 1,760 ms
31,232 KB
testcase_07 TLE -
testcase_08 AC 90 ms
27,264 KB
testcase_09 AC 90 ms
27,392 KB
testcase_10 AC 91 ms
27,520 KB
testcase_11 AC 91 ms
27,136 KB
testcase_12 AC 90 ms
27,136 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;
using System.Text;
using System.Numerics;
using System.Threading;
using System.Runtime.CompilerServices;
using System.Diagnostics;
using static System.Math;
using static System.Array;
using static AtCoder.Sc_out;
using static AtCoder.Tool;
using static AtCoder.ModInt;
namespace AtCoder
{
    class AC
    {
        const int MOD = 1000000007;
        //const int MOD = 998244353;

        const int INF = int.MaxValue / 2;
        const long SINF = long.MaxValue / 2;
        const double EPS = 1e-8;
        static readonly int[] dI = { 0, 1, 0, -1, 1, -1, -1, 1 };
        static readonly int[] dJ = { 1, 0, -1, 0, 1, 1, -1, -1 };
        //static List<List<int>> G = new List<List<int>>();
        //static List<List<Edge>> G = new List<List<Edge>>();
        //static List<Edge> E = new List<Edge>();
        static void Main(string[] args)
        {
            //var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; Console.SetOut(sw);

            var th = new Thread(Run, 1 << 26);
            th.Start();
            th.Join();

            //Run();
            Console.Out.Flush();
        }
        static void Run()
        {
            int Testcase = 1;
            for (var _ = 0; _ < Testcase; _++) Solve();
        }
        static void Solve()
        {
            int T = Cin.Int;
            var primes = new PrimeList(5000001);
            for (var _ = 0; _ < T; _++)
            {
                Cin.Input(out long a, out int P);
                if (primes.IsPrime(P))
                {
                    if (a % P == 0)
                    {
                        OutL(0);
                    }
                    else
                    {
                        OutL(1);
                    }
                    //if a%p!=0
                    // x^(p-1)=1 mod p
                    //=> ((A^1)^2)...)^{p-1}=1
                    //=> ans=1^P=1
                }
                else
                {
                    OutL(-1);
                }
            } 
        }
        public struct Edge
        {
            public int from;

            public int to;
            public long dist;

            public Edge(int t, long c)
            {
                from = -1;
                to = t;
                dist = c;
            }
            public Edge(int f, int t, long c)
            {
                from = f;
                to = t;
                dist = c;
            }
        }
    }
    public class PrimeList
    {
        private bool[] isprime;
        private List<int> primelist;

        public PrimeList(int n)
        {
            if (n < 2) { return; }
            primelist = new List<int>();
            isprime = new bool[n + 1];
            for (var i = 0; i <= n; i++)
            {
                isprime[i] = i != 0 && i != 1;
            }

            for (var i = 2; i <= n; i++)
            {
                if (!isprime[i]) { continue; }
                primelist.Add(i);

                int c = i;
                while (c + i <= n)
                {
                    c += i;
                    isprime[c] = false;
                }
            }
        }

        public bool IsPrime(int n)
        {
            return isprime[n];
        }

        public List<int> GetPrimeList()
        {
            return primelist;
        }

    }
    public class Priority_Queue<T>
    {
        private List<T> Q;
        private readonly Comparison<T> Func_Compare;
        public Priority_Queue(Comparison<T> comp)
        {
            Func_Compare = comp;
            Q = new List<T>();
        }
        private void PushHeap(List<T> list, T item)
        {
            int n = list.Count();
            list.Add(item);

            while (n != 0)
            {
                int pIndex = (n - 1) / 2;

                if (Func_Compare(list[n], list[pIndex]) < 0)
                {
                    Swap(Q, n, pIndex);
                }
                else { break; }

                n = pIndex;
            }
        }
        private void PopHeap(List<T> list)
        {
            int n = list.Count() - 1;
            list[0] = list[n];
            list.RemoveAt(n);

            int cur = 0;
            int comp;

            while (2 * cur + 1 <= n - 1)
            {
                int c1 = 2 * cur + 1;
                int c2 = 2 * (cur + 1);
                if (c1 == n - 1)
                {
                    comp = c1;
                }
                else
                {

                    comp = Func_Compare(list[c1], list[c2]) < 0 ? c1 : c2;
                }

                if (Func_Compare(list[cur], list[comp]) > 0)
                {
                    Swap(Q, cur, comp);
                }
                else { break; }

                cur = comp;
            }
        }
        private void Swap(List<T> list, int a, int b)
        {
            T keep = list[a];
            list[a] = list[b];
            list[b] = keep;
        }

        public void Enqueue(T value)
        {
            PushHeap(Q, value);
        }

        public T Dequeue()
        {
            T ret = Q[0];
            PopHeap(Q);
            return ret;
        }

        public T Peek()
        {
            return Q[0];
        }

        public int Count()
        {
            return Q.Count();
        }
        public bool Any()
        {
            return Q.Any();
        }
    }
    public class SegmentTree<T>
    {
        //1-indexed type
        int n;
        T[] Tree;
        Func<T, T, T> f;
        T ex;
        int L;
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public SegmentTree(int size, Func<T, T, T> fun, T exvalue)
        {
            ex = exvalue;
            f = fun;
            n = 1;
            while (n < size) n <<= 1;
            Tree = new T[n << 1];
            L = (n << 1) - 1;
            for (var i = 0; i <= L; i++) Tree[i] = ex;
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public SegmentTree(int size, Func<T, T, T> fun, T exvalue, T[] initial)
        {
            ex = exvalue;
            n = 1; while (n < size) n <<= 1;
            f = fun;
            Tree = new T[n << 1];
            L = (n << 1) - 1;
            for (var i = 0; i <= L; i++) Tree[i] = (n <= i && i <= n + initial.Length - 1) ? initial[i - n] : ex;
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public void Set_All()
        {
            for (var i = n - 1; i >= 1; i--) Tree[i] = f(Tree[i << 1], Tree[(i << 1) | 1]);
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public void Assign(int idx, T nxt) => Tree[idx + n] = nxt;
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public void Update(int idx)
        {
            int now = idx + n;
            while (now > 1)
            {
                now >>= 1;
                Tree[now] = f(Tree[now << 1], Tree[now << 1 | 1]);
            }
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public void Query_Update(int idx, T nxt)
        {
            Assign(idx, nxt); Update(idx);
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public void Query_Update_func(int idx, T y)
        {
            Assign(idx, f(Peek(idx), y)); Update(idx);
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public T Query_Fold(int l, int r)
        {
            int L = n + l;
            int R = n + r;
            T vL = ex, vR = ex;
            while (L < R)
            {
                if (L % 2 == 1)
                {
                    vL = f(vL, Tree[L]);
                    L++;
                }
                if (R % 2 == 1)
                {
                    vR = f(Tree[R - 1], vR);
                    R--;
                }
                L >>= 1;
                R >>= 1;
            }
            return f(vL, vR);
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public T Peek(int idx) => Tree[idx + n];
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public void Display(int len)
        {
            for (var i = 0; i < len; i++) Console.Write($"{Tree[i + n]} ");
            Console.WriteLine();
        }
    }
    public class UnionFind
    {
        private int[] parent;
        private int[] rank;
        private int[] size;
        public UnionFind(int n)
        {
            parent = new int[n];
            rank = new int[n];
            size = new int[n];
            for (var i = 0; i < n; i++)
            {
                parent[i] = i;
                rank[i] = 0;
                size[i] = 1;
            }
        }

        public int Root(int x)
        {
            return parent[x] == x ? x : parent[x] = Root(parent[x]);
        }

        public bool SameRoot(int x, int y)
        {
            return Root(x) == Root(y);
        }

        public void Unite(int x, int y)
        {
            x = Root(x);
            y = Root(y);
            if (x == y) { return; }

            if (rank[x] < rank[y])
            {
                parent[x] = y;
                size[y] += size[x];
                size[x] = 0;
            }
            else
            {
                parent[y] = x;
                if (rank[x] == rank[y]) { rank[x]++; }
                size[x] += size[y];
                size[y] = 0;
            }
        }

        public int SizeOf(int x)
        {
            return size[Root(x)];
        }

    }
    struct ModInt
    {
        public long value;
        private const int MOD = 1000000007;
        //private const int MOD = 998244353;
        public ModInt(long value) { this.value = value; }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static implicit operator ModInt(long a)
        {
            var ret = a % MOD;
            return new ModInt(ret < 0 ? (ret + MOD) : ret);
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static ModInt operator +(ModInt a, ModInt b) => (a.value + b.value);
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static ModInt operator -(ModInt a, ModInt b) => (a.value - b.value);
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static ModInt operator *(ModInt a, ModInt b) => (a.value * b.value);
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static ModInt operator /(ModInt a, ModInt b) => a * Modpow(b, MOD - 2);

        public static ModInt operator <<(ModInt a, int n) => (a.value << n);
        public static ModInt operator >>(ModInt a, int n) => (a.value >> n);
        public static ModInt operator ++(ModInt a) => a.value + 1;
        public static ModInt operator --(ModInt a) => a.value - 1;
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static ModInt Modpow(ModInt a, long n)
        {
            var k = a;
            ModInt ret = 1;
            while (n > 0)
            {
                if ((n & 1) != 0) ret *= k;
                k *= k;
                n >>= 1;
            }
            return ret;
        }
        private static readonly List<long> Factorials = new List<long>() { 1 };
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static ModInt Fac(long n)
        {
            for (var i = Factorials.Count(); i <= n; i++)
            {
                Factorials.Add((Factorials[i - 1] * i) % MOD);
            }
            return Factorials[(int)n];
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static ModInt nCr(long n, long r)
        {
            return n < r ? 0 : Fac(n) / (Fac(r) * Fac(n - r));
        }
        public static explicit operator int(ModInt a) => (int)a.value;
    }
    static class Cin
    {
        public static string[] ReadSplit => Console.ReadLine().Split();
        public static int[] ReadSplitInt => ConvertAll(Console.ReadLine().Split(), int.Parse);
        public static long[] ReadSplitLong => ConvertAll(Console.ReadLine().Split(), long.Parse);
        public static double[] ReadSplit_Double => ConvertAll(Console.ReadLine().Split(), double.Parse);
        public static string Str => Console.ReadLine();
        public static int Int => int.Parse(Console.ReadLine());
        public static long Long => long.Parse(Console.ReadLine());
        public static double Double => double.Parse(Console.ReadLine());
        public static T Conv<T>(string input)
        {
            if (typeof(T).Equals(typeof(ModInt)))
            {
                return (T)(dynamic)(long.Parse(input));
            }
            return (T)Convert.ChangeType(input, typeof(T));
        }
        public static void Input<T>(out T a) => a = Conv<T>(Console.ReadLine());
        public static void Input<T, U>(out T a, out U b)
        { var q = ReadSplit; a = Conv<T>(q[0]); b = Conv<U>(q[1]); }
        public static void Input<T, U, V>(out T a, out U b, out V c)
        { var q = ReadSplit; a = Conv<T>(q[0]); b = Conv<U>(q[1]); c = Conv<V>(q[2]); }
        public static void Input<T, U, V, W>(out T a, out U b, out V c, out W d)
        { var q = ReadSplit; a = Conv<T>(q[0]); b = Conv<U>(q[1]); c = Conv<V>(q[2]); d = Conv<W>(q[3]); }
        public static void Input<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
        { var q = ReadSplit; a = Conv<T>(q[0]); b = Conv<U>(q[1]); c = Conv<V>(q[2]); d = Conv<W>(q[3]); e = Conv<X>(q[4]); }
    }
    static class Sc_out
    {
        public static void OutL(object s) => Console.WriteLine(s);
        public static void Out_Sep<T>(IEnumerable<T> s) => Console.WriteLine(string.Join(" ", s));
        public static void Out_Sep<T>(IEnumerable<T> s, string sep) => Console.WriteLine(string.Join($"{sep}", s));
        public static void Out_Sep(params object[] s) => Console.WriteLine(string.Join(" ", s));
        public static void Out_One(object s) => Console.Write($"{s} ");
        public static void Out_One(object s, string sep) => Console.Write($"{s}{sep}");
        public static void Endl() => Console.WriteLine();
    }
    public static class Tool
    {
        static public void Initialize<T>(ref T[] array, T initialvalue)
        {
            array = ConvertAll(array, x => initialvalue);
        }
        static public void Swap<T>(ref T a, ref T b)
        {
            T keep = a;
            a = b;
            b = keep;
        }
        static public void Display<T>(T[,] array2d, int n, int m)
        {
            for (var i = 0; i < n; i++)
            {
                for (var j = 0; j < m; j++)
                {
                    Console.Write($"{array2d[i, j]} ");
                }
                Console.WriteLine();
            }
        }
        static public long Gcd(long a, long b)
        {
            if (a == 0 || b == 0) return Max(a, b);
            return a % b == 0 ? b : Gcd(b, a % b);
        }
        static public long LPow(int a, int b) => (long)Pow(a, b);
        static public bool Bit(long x, int dig) => ((1L << dig) & x) != 0;
        static public int Sig(long a) => a == 0 ? 0 : (int)(a / Abs(a));
    }
}
0