結果
| 問題 |
No.42 貯金箱の溜息
|
| コンテスト | |
| ユーザー |
anta
|
| 提出日時 | 2014-10-17 00:27:02 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,854 bytes |
| コンパイル時間 | 1,027 ms |
| コンパイル使用メモリ | 94,632 KB |
| 実行使用メモリ | 7,552 KB |
| 最終ジャッジ日時 | 2024-12-30 09:23:59 |
| 合計ジャッジ時間 | 1,981 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 1 WA * 2 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:182:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
182 | scanf("%d", &T);
| ~~~~~^~~~~~~~~~
main.cpp:213:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
213 | scanf("%lld", &M);
| ~~~~~^~~~~~~~~~~~
ソースコード
#define _CRT_SECURE_NO_WARNINGS
#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <set>
#include <map>
#include <queue>
#include <iostream>
#include <sstream>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <cctype>
#include <cassert>
#include <limits>
#include <unordered_set>
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
#if defined(_MSC_VER) || __cplusplus > 199711L
#define aut(r,v) auto r = (v)
#else
#define aut(r,v) typeof(v) r = (v)
#endif
#define each(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it)
#define all(o) (o).begin(), (o).end()
#define pb(x) push_back(x)
#define mp(x,y) make_pair((x),(y))
#define mset(m,v) memset(m,v,sizeof(m))
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3fLL
using namespace std;
typedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii;
typedef long long ll; typedef vector<long long> vl; typedef pair<long long,long long> pll; typedef vector<pair<long long,long long> > vpll;
typedef vector<string> vs; typedef long double ld;
template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; }
template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; }
template<int MOD>
struct ModInt {
static const int Mod = MOD;
unsigned x;
ModInt(): x(0) { }
ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; }
ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; }
int get() const { return (int)x; }
ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
ModInt inverse() const {
long long a = x, b = MOD, u = 1, v = 0;
while(b) {
long long t = a / b;
a -= t * b; std::swap(a, b);
u -= t * v; std::swap(u, v);
}
return ModInt(u);
}
bool operator==(ModInt that) const { return x == that.x; }
bool operator!=(ModInt that) const { return x != that.x; }
ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
typedef ModInt<1000000009> mint;
struct Polynomial {
typedef mint Coef; typedef Coef Val;
vector<Coef> coef; //... + coef[2] x^2 + coef[1] x + coef[0]
Polynomial() {}
explicit Polynomial(int n): coef(n) {}
static Polynomial One() {
Polynomial r(1);
r.coef[0] = 1;
return r;
}
bool iszero() const { return coef.empty(); }
int degree1() const { return coef.size(); } //degree + 1
int resize(int d) { if(degree1() < d) coef.resize(d); return d; }
const Coef operator[](int i) const {
return i >= degree1() ? Coef() : coef[i];
}
void canonicalize() {
int i = coef.size();
while(i > 0 && coef[i-1] == Coef()) i --;
coef.resize(i);
}
Val evalute(Val x) const {
int d = degree1();
Val t = 0, y = 1;
rep(i, d) {
t += y * coef[i];
y *= x;
}
return t;
}
Polynomial &operator+=(const Polynomial &that) {
int d = resize(that.degree1());
for(int i = 0; i < d; i ++) coef[i] += that[i];
canonicalize();
return *this;
}
Polynomial operator+(const Polynomial &that) const { return Polynomial(*this) += that; }
Polynomial &operator-=(const Polynomial &that) {
int d = resize(that.degree1());
for(int i = 0; i < d; i ++) coef[i] -= that[i];
canonicalize();
return *this;
}
Polynomial operator-(const Polynomial &that) const { return Polynomial(*this) -= that; }
Polynomial operator-() const {
int d = degree1();
Polynomial res(d);
for(int i = 0; i < d; i ++) res.coef[i] = - coef[i];
return res;
}
//naive
Polynomial operator*(const Polynomial &that) const {
if(iszero() || that.iszero()) return Polynomial();
int x = degree1(), y = that.degree1(), d = x + y - 1;
Polynomial res(d);
rep(i, x) rep(j, y)
res.coef[i+j] += coef[i] * that.coef[j];
res.canonicalize();
return res;
}
//long division
pair<Polynomial, Polynomial> divmod(const Polynomial &that) const {
int x = degree1() - 1, y = that.degree1() - 1;
int d = max(0, x - y);
Polynomial q(d + 1), r = *this;
for(int i = x; i >= y; i --) {
Coef t = r.coef[i] / that.coef[y];
q.coef[i - y] = t;
assert(t * that.coef[y] == r.coef[i]);
r.coef[i] = 0;
if(t == 0) continue;
for(int j = 0; j < y; j ++)
r.coef[i - y + j] -= t * that.coef[j];
}
q.canonicalize(); r.canonicalize();
return make_pair(q, r);
}
Polynomial operator/(const Polynomial &that) const { return divmod(that).first; }
Polynomial operator%(const Polynomial &that) const { return divmod(that).second; }
static Polynomial interpolate(const vector<pair<Coef,Val> > &points) {
int n = points.size();
vector<Coef> dp(n+1);
dp[0] = 1;
rep(i, n) for(int j = i; j >= 0; j --) {
dp[j+1] += dp[j];
dp[j] *= -points[i].first;
}
Polynomial r(n);
rep(i, n) {
Coef den = 1;
rep(j, n) if(i != j)
den *= points[i].first - points[j].first;
Coef iden = (Coef)1 / den, minus = 0;
for(int j = n-1; j >= 0; j --) {
minus = dp[j+1] + minus * points[i].first;
r.coef[j] += minus * iden * points[i].second;
}
}
r.canonicalize();
return r;
}
};
int main() {
int T;
scanf("%d", &T);
const int N = 6;
const int xs[N] = { 1, 5, 10, 50, 100, 500 };
const int X = 1000000, Y = 500, Z = 500 * 500, D = 100;
vector<mint> dp(X+1);
dp[0] = 1;
rep(i, N) {
int x = xs[i];
rer(j, 0, X-x)
dp[j + x] += dp[j];
}
vector<Polynomial> polynomials(Y);
rep(c, Y) {
// cerr << c << "..." << endl;
vector<pair<mint,mint> > points(D);
rep(i, D) {
int z = Z + i * Y;
points[i] = mp(z, dp[z]);
}
polynomials[c] = Polynomial::interpolate(points);
/*
rep(i, D + 100) {
int z = Z + i * Y;
mint a = polynomials[c].evalute(z);
mint b = dp[z];
if(a.get() != b.get()) cerr << c << ", " << z << ": " << a.get() << ", " << b.get() << endl;
}
// */
}
rep(ii, T) {
long long M;
scanf("%lld", &M);
mint ans;
if(M <= X)
ans = dp[(int)M];
else
ans = polynomials[M % Y].evalute(M);
printf("%d\n", ans.get());
}
return 0;
}
anta