結果
問題 | No.1145 Sums of Powers |
ユーザー | noimi |
提出日時 | 2020-07-26 23:12:14 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 458 ms / 2,000 ms |
コード長 | 6,435 bytes |
コンパイル時間 | 2,903 ms |
コンパイル使用メモリ | 234,160 KB |
実行使用メモリ | 46,516 KB |
最終ジャッジ日時 | 2024-06-28 19:39:27 |
合計ジャッジ時間 | 5,204 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 4 ms
5,376 KB |
testcase_03 | AC | 458 ms
46,248 KB |
testcase_04 | AC | 449 ms
46,380 KB |
testcase_05 | AC | 452 ms
46,516 KB |
コンパイルメッセージ
main.cpp:193:1: warning: ISO C++ forbids declaration of 'main' with no type [-Wreturn-type] 193 | main() { | ^~~~
ソースコード
#pragma region Macros #pragma GCC optimize("O3") #include <bits/stdc++.h> #define ll long long #define rep2(i, a, b) for(ll i = a; i <= b; ++i) #define rep(i, n) for(ll i = 0; i < n; ++i) #define rep3(i, a, b) for(ll i = a; i >= b; --i) using namespace std; namespace modular { constexpr ll MOD = 998244353; const int MAXN = 1100000; template <ll Modulus> class modint { using u64 = ll; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {} constexpr u64 &value() noexcept { return a; } constexpr const u64 &value() const noexcept { return a; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } template <typename T> constexpr modint operator^(T rhs) const noexcept { return modint(*this) ^= rhs; } constexpr modint operator-() const noexcept { return modint() - *this; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if(a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if(a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr bool operator==(const modint rhs) const noexcept { return a == rhs.a; } template <typename T> constexpr modint &operator^=(T n) noexcept { modint<Modulus> res = 1; modint<Modulus> x = a; while(n) { if(n & 1) res *= x; x *= x; n >>= 1; } a = res.a; return *this; } }; #define mint modint<MOD> #define vmint vector<mint> vmint Inv{0, 1}; mint inv(int n) { if(n > MAXN) return mint(n) ^ (MOD - 2); if(Inv.size() > n) return Inv[n]; else { for(int i = Inv.size(); i <= n; ++i) Inv.emplace_back(Inv[MOD % i] * (-MOD / i)); return Inv[n]; } } mint inv(mint x) { return inv(x.a); } mint modpow(ll a, ll n) { mint x = a; return x ^= n; } mint operator/(mint l, mint r) { return l * inv(r); } mint &operator/=(mint &l, mint r) { return l = l / r; } ostream &operator<<(ostream &os, mint a) { os << a.a; return os; } template <typename T> ostream &operator<<(ostream &os, vector<T> a) { for(auto &e : a) os << e << " "; return os; } mint operator*(ll x, mint y) { return y * x; } istream &operator>>(istream &is, mint &a) { ll x; is >> x; a = x; return is; } mint proot = 3; void FMT(vmint &f, const bool is_inv = false) { const int n = f.size(); const mint root = is_inv ? inv(proot) : proot; vmint g(n); for(int b = n >> 1; b > 0; b >>= 1) { mint a = root ^ ((MOD - 1) / (n / b)), p = 1; for(int i = 0; i < n; i += b << 1) { rep(j, b) { f[i + j + b] *= p; g[(i >> 1) + j] = f[i + j] + f[i + b + j]; g[(n >> 1) + (i >> 1) + j] = f[i + j] - f[i + b + j]; } p *= a; } swap(f, g); } if(is_inv) rep(i, n) f[i] *= inv(n); } vmint mul(vmint x, const vmint &y) { int n = x.size() + y.size() - 1; int s = 1; while(s < n) s <<= 1; x.resize(s); FMT(x); vmint z(s); rep(i, y.size()) z[i] = y[i]; FMT(z); rep(i, s) x[i] *= z[i]; FMT(x, true); x.resize(n); return x; } using Poly = vmint; Poly operator-(Poly f) { for(auto &&e : f) e = -e; return f; } Poly &operator+=(Poly &l, const Poly &r) { l.resize(max(l.size(), r.size())); rep(i, r.size()) l[i] += r[i]; return l; } Poly operator+(Poly l, const Poly &r) { return l += r; } Poly &operator-=(Poly &l, const Poly &r) { l.resize(max(l.size(), r.size())); rep(i, r.size()) l[i] -= r[i]; return l; } Poly operator-(Poly l, const Poly &r) { return l -= r; } Poly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; } Poly operator<<(Poly f, size_t n) { return f <<= n; } Poly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; } Poly operator>>(Poly f, size_t n) { return f >>= n; } Poly operator*(const Poly &l, const Poly &r) { return mul(l, r); } Poly &operator*=(Poly &l, const Poly &r) { return l = l * r; } Poly inv(const Poly &f) { Poly g{1 / f[0]}; while(g.size() < f.size()) { Poly x(f.begin(), f.begin() + min(f.size(), g.size() << 1)), y = g; x.resize(g.size() << 1), FMT(x); y.resize(g.size() << 1), FMT(y); rep(i, x.size()) x[i] *= y[i]; FMT(x, true); x >>= g.size(); x.resize(g.size() << 1), FMT(x); rep(i, x.size()) x[i] *= -y[i]; FMT(x, true); g.insert(g.end(), x.begin(), x.begin() + g.size()); } return Poly{begin(g), begin(g) + f.size()}; } Poly integ(const Poly &f) { Poly res(f.size() + 1); for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i; return res; } Poly deriv(const Poly &f) { if(f.size() == 0) return Poly(); Poly res(f.size() - 1); rep(i, res.size()) res[i] = f[i + 1] * (i + 1); return res; } Poly log(const Poly &f) { Poly g = integ(inv(f) * deriv(f)); return Poly{g.begin(), g.begin() + f.size()}; } Poly exp(const Poly &f) { Poly g{1}; while(g.size() < f.size()) { Poly x(f.begin(), f.begin() + min(f.size(), g.size() * 2)); x[0] += 1; g.resize(2 * g.size()); x -= log(g); x *= {g.begin(), g.begin() + g.size() / 2}; rep2(i, g.size() / 2, min<int>(x.size(), g.size()) - 1) g[i] = x[i]; } return {g.begin(), g.begin() + f.size()}; } } // namespace modular using namespace modular; main() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); int n, m; cin >> n >> m; vector<Poly> f(n); rep(i, n) { int A; cin >> A; f[i] = Poly{1, A}; } int t = 1; while(t < n) { for(int i = 0; i < n; i += t * 2) { if(i + t < n) f[i] *= f[i + t]; } t <<= 1; } auto &F = f[0]; F.resize(m + 1); F = log(F); rep2(i, 1, m) cout << F[i] * i * (~i & 1 ? -1 : 1) << " \n"[i == m]; }