結果

問題 No.1145 Sums of Powers
ユーザー noiminoimi
提出日時 2020-07-26 23:12:14
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 458 ms / 2,000 ms
コード長 6,435 bytes
コンパイル時間 2,903 ms
コンパイル使用メモリ 234,160 KB
実行使用メモリ 46,516 KB
最終ジャッジ日時 2024-06-28 19:39:27
合計ジャッジ時間 5,204 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 4 ms
5,376 KB
testcase_03 AC 458 ms
46,248 KB
testcase_04 AC 449 ms
46,380 KB
testcase_05 AC 452 ms
46,516 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:193:1: warning: ISO C++ forbids declaration of 'main' with no type [-Wreturn-type]
  193 | main() {
      | ^~~~

ソースコード

diff #

#pragma region Macros
#pragma GCC optimize("O3")
#include <bits/stdc++.h>
#define ll long long
#define rep2(i, a, b) for(ll i = a; i <= b; ++i)
#define rep(i, n) for(ll i = 0; i < n; ++i)
#define rep3(i, a, b) for(ll i = a; i >= b; --i)
using namespace std;
namespace modular {
constexpr ll MOD = 998244353;
const int MAXN = 1100000;
template <ll Modulus> class modint {
    using u64 = ll;

  public:
    u64 a;

    constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {}
    constexpr u64 &value() noexcept { return a; }
    constexpr const u64 &value() const noexcept { return a; }
    constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; }
    constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; }
    constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; }
    template <typename T> constexpr modint operator^(T rhs) const noexcept { return modint(*this) ^= rhs; }
    constexpr modint operator-() const noexcept { return modint() - *this; }
    constexpr modint &operator+=(const modint rhs) noexcept {
        a += rhs.a;
        if(a >= Modulus) { a -= Modulus; }
        return *this;
    }
    constexpr modint &operator-=(const modint rhs) noexcept {
        if(a < rhs.a) { a += Modulus; }
        a -= rhs.a;
        return *this;
    }
    constexpr modint &operator*=(const modint rhs) noexcept {
        a = a * rhs.a % Modulus;
        return *this;
    }
    constexpr bool operator==(const modint rhs) const noexcept { return a == rhs.a; }
    template <typename T> constexpr modint &operator^=(T n) noexcept {
        modint<Modulus> res = 1;
        modint<Modulus> x = a;
        while(n) {
            if(n & 1) res *= x;
            x *= x;
            n >>= 1;
        }
        a = res.a;
        return *this;
    }
};
#define mint modint<MOD>
#define vmint vector<mint>
vmint Inv{0, 1};
mint inv(int n) {
    if(n > MAXN) return mint(n) ^ (MOD - 2);
    if(Inv.size() > n)
        return Inv[n];
    else {
        for(int i = Inv.size(); i <= n; ++i) Inv.emplace_back(Inv[MOD % i] * (-MOD / i));
        return Inv[n];
    }
}
mint inv(mint x) { return inv(x.a); }
mint modpow(ll a, ll n) {
    mint x = a;
    return x ^= n;
}
mint operator/(mint l, mint r) { return l * inv(r); }
mint &operator/=(mint &l, mint r) { return l = l / r; }
ostream &operator<<(ostream &os, mint a) {
    os << a.a;
    return os;
}
template <typename T> ostream &operator<<(ostream &os, vector<T> a) {
    for(auto &e : a) os << e << " ";
    return os;
}
mint operator*(ll x, mint y) { return y * x; }
istream &operator>>(istream &is, mint &a) {
    ll x;
    is >> x;
    a = x;
    return is;
}
mint proot = 3;

void FMT(vmint &f, const bool is_inv = false) {
    const int n = f.size();
    const mint root = is_inv ? inv(proot) : proot;
    vmint g(n);
    for(int b = n >> 1; b > 0; b >>= 1) {
        mint a = root ^ ((MOD - 1) / (n / b)), p = 1;
        for(int i = 0; i < n; i += b << 1) {
            rep(j, b) {
                f[i + j + b] *= p;
                g[(i >> 1) + j] = f[i + j] + f[i + b + j];
                g[(n >> 1) + (i >> 1) + j] = f[i + j] - f[i + b + j];
            }
            p *= a;
        }
        swap(f, g);
    }
    if(is_inv) rep(i, n) f[i] *= inv(n);
}

vmint mul(vmint x, const vmint &y) {
    int n = x.size() + y.size() - 1;
    int s = 1;
    while(s < n) s <<= 1;
    x.resize(s);
    FMT(x);
    vmint z(s);
    rep(i, y.size()) z[i] = y[i];
    FMT(z);
    rep(i, s) x[i] *= z[i];
    FMT(x, true);
    x.resize(n);
    return x;
}

using Poly = vmint;
Poly operator-(Poly f) {
    for(auto &&e : f) e = -e;
    return f;
}
Poly &operator+=(Poly &l, const Poly &r) {
    l.resize(max(l.size(), r.size()));
    rep(i, r.size()) l[i] += r[i];
    return l;
}
Poly operator+(Poly l, const Poly &r) { return l += r; }
Poly &operator-=(Poly &l, const Poly &r) {
    l.resize(max(l.size(), r.size()));
    rep(i, r.size()) l[i] -= r[i];
    return l;
}
Poly operator-(Poly l, const Poly &r) { return l -= r; }
Poly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; }
Poly operator<<(Poly f, size_t n) { return f <<= n; }
Poly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; }
Poly operator>>(Poly f, size_t n) { return f >>= n; }
Poly operator*(const Poly &l, const Poly &r) { return mul(l, r); }
Poly &operator*=(Poly &l, const Poly &r) { return l = l * r; }
Poly inv(const Poly &f) {
    Poly g{1 / f[0]};
    while(g.size() < f.size()) {
        Poly x(f.begin(), f.begin() + min(f.size(), g.size() << 1)), y = g;
        x.resize(g.size() << 1), FMT(x);
        y.resize(g.size() << 1), FMT(y);
        rep(i, x.size()) x[i] *= y[i];
        FMT(x, true);
        x >>= g.size();
        x.resize(g.size() << 1), FMT(x);
        rep(i, x.size()) x[i] *= -y[i];
        FMT(x, true);
        g.insert(g.end(), x.begin(), x.begin() + g.size());
    }
    return Poly{begin(g), begin(g) + f.size()};
}
Poly integ(const Poly &f) {
    Poly res(f.size() + 1);
    for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i;
    return res;
}
Poly deriv(const Poly &f) {
    if(f.size() == 0) return Poly();
    Poly res(f.size() - 1);
    rep(i, res.size()) res[i] = f[i + 1] * (i + 1);
    return res;
}
Poly log(const Poly &f) {
    Poly g = integ(inv(f) * deriv(f));
    return Poly{g.begin(), g.begin() + f.size()};
}
Poly exp(const Poly &f) {
    Poly g{1};
    while(g.size() < f.size()) {
        Poly x(f.begin(), f.begin() + min(f.size(), g.size() * 2));
        x[0] += 1;
        g.resize(2 * g.size());
        x -= log(g);
        x *= {g.begin(), g.begin() + g.size() / 2};
        rep2(i, g.size() / 2, min<int>(x.size(), g.size()) - 1) g[i] = x[i];
    }
    return {g.begin(), g.begin() + f.size()};
}

} // namespace modular
using namespace modular;

main() {
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n, m;
    cin >> n >> m;
    vector<Poly> f(n);
    rep(i, n) {
        int A;
        cin >> A;
        f[i] = Poly{1, A};
    }
    int t = 1;
    while(t < n) {
        for(int i = 0; i < n; i += t * 2) {
            if(i + t < n) f[i] *= f[i + t];
        }
        t <<= 1;
    }
    auto &F = f[0];
    F.resize(m + 1);
    F = log(F);
    rep2(i, 1, m) cout << F[i] * i * (~i & 1 ? -1 : 1) << " \n"[i == m];
}
0