結果
| 問題 |
No.1094 木登り / Climbing tree
|
| ユーザー |
heno239
|
| 提出日時 | 2020-07-29 13:50:39 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 579 ms / 2,000 ms |
| コード長 | 4,944 bytes |
| コンパイル時間 | 1,769 ms |
| コンパイル使用メモリ | 129,500 KB |
| 実行使用メモリ | 66,432 KB |
| 最終ジャッジ日時 | 2024-11-08 06:59:35 |
| 合計ジャッジ時間 | 15,952 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 26 |
ソースコード
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acos(-1.0);
ll mod_pow(ll x, ll n, ll m) {
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
struct modint {
ll n;
modint() :n(0) { ; }
modint(ll m) :n(m) {
if (n >= mod)n %= mod;
else if (n < 0)n = (n % mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, int n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
const int max_n = 1 << 19;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
struct lcagraph {
private:
int n;
vector<vector<int>> G;
vector<vector<int>> parent;
vector<int> depth;
int root;
int tmp;
public:
lcagraph(int n_) {
n = n_;
G.resize(n);
parent.resize(n);
depth.resize(n);
tmp = 0;
int cop = n;
while (cop) {
tmp++; cop /= 2;
}
rep(i, n)parent[i].resize(tmp);
root = 0;
}
lcagraph() {}
void init(int n_) {
n = n_;
G.resize(n);
parent.resize(n);
depth.resize(n);
tmp = 0;
int cop = n;
while (cop) {
tmp++; cop /= 2;
}
rep(i, n)parent[i].resize(tmp);
root = 0;
}
void add_edge(int a, int b) {
G[a].push_back(b);
G[b].push_back(a);
}
void dfs(int id, int fr, int d) {
parent[id][0] = fr;
depth[id] = d;
rep(j, G[id].size()) {
int to = G[id][j];
if (to == fr)continue;
dfs(to, id, d + 1);
}
}
void complete(int r = 0) {
root = r;
dfs(root, -1, 0);
rep(j, tmp - 1)rep(i, n) {
if (parent[i][j] < 0)parent[i][j + 1] = -1;
else parent[i][j + 1] = parent[parent[i][j]][j];
}
}
int lca(int u, int v) {
if (depth[u] > depth[v])swap(u, v);
for (int k = 0; k < tmp; k++) {
if ((depth[v] - depth[u]) >> k & 1) {
v = parent[v][k];
}
}
if (u == v)return u;
for (int k = tmp - 1; k >= 0; k--) {
if (parent[u][k] != parent[v][k]) {
u = parent[u][k];
v = parent[v][k];
}
}
return parent[u][0];
}
int dep(int x) {
return depth[x];
}
int dist(int x, int y) {
int l = lca(x, y);
return depth[x] + depth[y] - 2 * depth[l];
}
};
struct edge {
int to; ll cost;
};
void solve() {
int n; cin >> n;
lcagraph lg(n);
vector<ll> d(n);
vector<vector<edge>> G(n);
rep(i, n - 1) {
int a, b, c; cin >> a >> b >> c; a--; b--;
G[a].push_back({ b,c });
G[b].push_back({ a,c });
lg.add_edge(a, b);
}
lg.complete();
vector<P> vs;
vs.push_back({ 0,-1 }); d[0] = 0;
while (vs.size()) {
P p = vs.back(); vs.pop_back();
int v = p.first, fr = p.second;
for (edge e: G[v]) {
if (e.to == fr)continue;
d[e.to] = d[v] + e.cost;
vs.push_back({ e.to,v });
}
}
int q; cin >> q;
rep(i, q) {
int s, t; cin >> s >> t; s--; t--;
int l = lg.lca(s, t);
ll ans = d[s] + d[t] - 2 * d[l];
cout << ans << "\n";
}
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed << setprecision(10);
//init_f();
//cout << grandy(2, 3, false, false) << "\n";
//init();
//int t; cin >> t; rep(i, t)
solve();
return 0;
}
heno239