結果
問題 | No.1144 Triangles |
ユーザー | null |
提出日時 | 2020-07-31 03:07:41 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 6,553 bytes |
コンパイル時間 | 1,320 ms |
コンパイル使用メモリ | 148,868 KB |
実行使用メモリ | 10,144 KB |
最終ジャッジ日時 | 2024-07-05 06:49:51 |
合計ジャッジ時間 | 11,035 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,144 KB |
testcase_01 | AC | 1 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 358 ms
6,944 KB |
testcase_05 | AC | 366 ms
6,940 KB |
testcase_06 | AC | 355 ms
6,940 KB |
testcase_07 | AC | 360 ms
6,944 KB |
testcase_08 | AC | 352 ms
6,940 KB |
testcase_09 | AC | 1 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 1 ms
6,944 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 330 ms
6,944 KB |
testcase_15 | AC | 325 ms
6,944 KB |
testcase_16 | AC | 351 ms
6,940 KB |
testcase_17 | AC | 346 ms
6,944 KB |
testcase_18 | AC | 353 ms
6,944 KB |
testcase_19 | AC | 17 ms
6,944 KB |
testcase_20 | AC | 3 ms
6,944 KB |
testcase_21 | AC | 3 ms
6,940 KB |
testcase_22 | AC | 336 ms
6,944 KB |
testcase_23 | AC | 20 ms
6,940 KB |
testcase_24 | AC | 328 ms
6,944 KB |
testcase_25 | AC | 107 ms
6,944 KB |
testcase_26 | AC | 12 ms
6,944 KB |
testcase_27 | TLE | - |
testcase_28 | -- | - |
ソースコード
/* このコード、と~おれ! Be accepted! ∧_∧ (。・ω・。)つ━☆・*。 ⊂ ノ ・゜+. しーJ °。+ *´¨) .· ´¸.·*´¨) ¸.·*¨) (¸.·´ (¸.·'* ☆ */ #include <cstdio> #include <algorithm> #include <string> #include <cmath> #include <cstring> #include <vector> #include <numeric> #include <iostream> #include <random> #include <map> #include <unordered_map> #include <queue> #include <regex> #include <functional> #include <complex> #include <list> #include <cassert> #include <iomanip> #include <set> #include <stack> #include <bitset> ////多倍長整数, cpp_intで宣言 //#include <boost/multiprecision/cpp_int.hpp> //using namespace boost::multiprecision; //#pragma gcc target ("avx2") //#pragma gcc optimization ("O3") //#pragma gcc optimization ("unroll-loops") #define rep(i, n) for(int i = 0; i < (n); ++i) #define printynl(a) printf(a ? "yes\n" : "no\n") #define printyn(a) printf(a ? "Yes\n" : "No\n") #define printYN(a) printf(a ? "YES\n" : "NO\n") #define printim(a) printf(a ? "possible\n" : "imposible\n") #define printdb(a) printf("%.50lf\n", a) //少数出力 #define printLdb(a) printf("%.50Lf\n", a) //少数出力 #define printdbd(a) printf("%.16lf\n", a) //少数出力(桁少なめ) #define prints(s) printf("%s\n", s.c_str()) //string出力 #define all(x) (x).begin(), (x).end() #define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI) #define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L) #define Please return #define AC 0 #define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d)) /*(a, b) から (c, d) のマンハッタン距離 */ #define inf numeric_limits<double>::infinity(); #define linf numeric_limits<long double>::infinity() using ll = long long; using ull = unsigned long long; constexpr int INF = 1073741823; constexpr int MINF = -1073741823; constexpr ll LINF = ll(4661686018427387903); constexpr ll MOD = 1e9 + 7; constexpr long double eps = 1e-6; const long double PI = acosl(-1.0L); using namespace std; void scans(string& str) { char c; str = ""; scanf("%c", &c); if (c == '\n')scanf("%c", &c); while (c != '\n' && c != -1 && c != ' ') { str += c; scanf("%c", &c); } } void scanc(char& str) { char c; scanf("%c", &c); if (c == -1)return; while (c == '\n') { scanf("%c", &c); } str = c; } double acot(double x) { return PI / 2 - atan(x); } ll LSB(ll n) { return (n & (-n)); } template<typename T> T chmin(T& a, const T& b) { if (a > b)a = b; return a; } template<typename T> T chmax(T& a, const T& b) { if (a < b)a = b; return a; } /*-----------------------------------------ここからコード-----------------------------------------*/ /* * @title modint * @docs kyopro/docs/modint.md */ template<int mod> struct modint { int val, size; vector<ll> fac, inv, facinv; modint() : val(0), size(0) {}; modint(ll x) : val(x >= 0 ? x % mod : (mod + x % mod) % mod), size(0) {}; //siz <= 1e7 くらい void cominit(const int siz) { size = siz; fac.assign(siz + 1, 0); inv.assign(siz + 1, 0); facinv.assign(siz + 1, 0); fac[0] = fac[1] = facinv[0] = facinv[1] = inv[0] = 1; for (ll i = 2; i <= siz; ++i) { fac[i] = fac[i - 1] * i % mod; inv[i] = mod - inv[mod % i] * (mod / i) % mod; facinv[i] = facinv[i - 1] * inv[i] % mod; } } modint& operator=(const modint& x) { val = x.val; return *this; } modint& operator+=(const modint& x) { val += x.val; if (val >= mod)val -= mod; return *this; } modint& operator-=(const modint& x) { val += mod - x.val; if (val >= mod)val -= mod; return *this; } modint& operator*=(const modint& x) { val = (int)((ll)val * (ll)x.val % mod); return *this; } modint& operator/=(const modint& x) { if (x.val <= size) { ll num = x.val; num *= inv[x.val]; num %= mod; val = num; return *this; } int a = x.val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } *this *= modint(u); return *this; } modint operator++() { val = (val + 1 == mod ? 0 : val + 1); return *this; } modint operator--() { val = (val == 0 ? mod - 1 : val - 1); return *this; } modint operator+(const modint& x) const { return (modint(*this) += x); } modint operator-(const modint& x) const { return (modint(*this) -= x); } modint operator*(const modint& x) const { return (modint(*this) *= x); } modint operator/(const modint& x) const { return (modint(*this) /= x); } bool operator==(const modint& x)const { return (val == x.val); } bool operator!=(const modint& x)const { return (val != x.val); } bool operator<(const modint& x)const { return (val < x.val); } bool operator>(const modint& x)const { return (val > x.val); } modint pow(ll n) { modint ret(1), a(val); while (n > 0) { if (n % 2) ret *= a; a *= a; n /= 2; } return ret; } modint comb(const modint& n, const modint& r) { return (n < r or n < 0 or r < 0) ? 0 : ((fac[n] * (facinv[r] * facinv[n - r] % mod)) % mod); } static int getmod() { return mod; }; }; struct vector2D { ll x, y; vector2D(ll x, ll y) : x(x), y(y) {} vector2D(ll stx, ll sty, ll enx, ll eny) : x(enx - stx), y(eny - sty) {} vector2D() : x(0), y(0) {} vector2D operator+(const vector2D p) { return vector2D(x + p.x, y + p.y); } vector2D operator-(const vector2D p) { return vector2D(x - p.x, y - p.y); } // スカラー倍 vector2D operator*(const ll p) { return vector2D(x * p, y * p); } }; inline ll vectorproduct(vector2D p, vector2D q) { return p.x * q.y - p.y * q.x; } inline bool comp(const vector2D& a, const vector2D& b) { if (a.x == 0 and a.y == 0)return true; else if (b.x == 0 and b.y == 0)return false; else if (a.x < 0) { if (b.x < 0) { return vectorproduct(a, b) > 0; } else { return false; } } else { if (b.x < 0) { return true; } else { return vectorproduct(a, b) > 0; } } } int main() { int n; scanf("%d", &n); vector<pair<int, int>> p(n); for (auto& [x, y] : p) scanf("%d%d", &x, &y); modint<MOD> ans; vector<vector2D> q(n); rep(i, n) { rep(j, n) { if (p[j].second - p[i].second >= 0)q[j].x = p[j].first - p[i].first, q[j].y = p[j].second - p[i].second; else q[j].x = p[i].first - p[j].first, q[j].y = p[i].second - p[j].second; } vector2D r; sort(all(q), comp); for (int j = n - 1; j >= 0; --j) { r = r + q[j]; ans += vectorproduct(q[j], r); } } ans /= 3; printf("%d\n", ans.val); Please AC; }