結果
| 問題 |
No.106 素数が嫌い!2
|
| コンテスト | |
| ユーザー |
poapoa
|
| 提出日時 | 2020-07-31 11:25:25 |
| 言語 | Haskell (9.10.1) |
| 結果 |
AC
|
| 実行時間 | 63 ms / 5,000 ms |
| コード長 | 4,456 bytes |
| コンパイル時間 | 12,514 ms |
| コンパイル使用メモリ | 207,904 KB |
| 実行使用メモリ | 24,288 KB |
| 最終ジャッジ日時 | 2024-07-06 01:30:10 |
| 合計ジャッジ時間 | 13,528 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 13 |
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default
[1 of 2] Compiling Main ( Main.hs, Main.o )
Main.hs:125:34: warning: [GHC-63394] [-Wx-partial]
In the use of ‘head’
(imported from Prelude, but defined in GHC.List):
"This is a partial function, it throws an error on empty lists. Use pattern matching or Data.List.uncons instead. Consider refactoring to use Data.List.NonEmpty."
|
125 | wheelSieve k = reverse ps ++ map head (pSieve p (cycle ns))
| ^^^^
[2 of 2] Linking a.out
ソースコード
import qualified Control.Arrow as Arrow
import qualified Control.Monad as Monad
import qualified Data.ByteString.Char8 as BSC8
import qualified Data.List as List
import qualified Data.Vector.Unboxed as VU
import qualified Data.Vector.Unboxed.Mutable as VUM
-- solver
solver :: Int -> Int -> IO Int
solver n k = do
table <- VUM.replicate (n+1) 0 :: IO (VUM.IOVector Int)
Monad.forM_ [2..n] $ \i -> do
x <- VUM.read table i
Monad.when (x == 0) $ do
VUM.write table i 1
Monad.forM_ [2 * i, 3 * i .. n] $ \j -> _modify table j (+1)
Monad.foldM (_func k table) 0 [2 .. n]
where
_func k table c i = do
x <- VUM.read table i
if x >= k
then return (c + 1)
else return c
_modify :: VUM.IOVector Int -> Int -> (Int -> Int) -> IO ()
_modify v i f = do
x <- VUM.read v i
VUM.write v i (f x)
-- main
main :: IO ()
main = do
(n, k) <- getAB
print =<< solver n k
-- io
getI :: BSC8.ByteString -> Maybe (Int, BSC8.ByteString)
getI = fmap (Arrow.second BSC8.tail) . BSC8.readInt
getAB :: IO (Int, Int)
getAB = (\vec -> (vec VU.! 0, vec VU.! 1)) . VU.unfoldrN 2 getI <$> BSC8.getLine
-- primes
pSpin :: Num int => int -> [int] -> [int]
pSpin x (y:ys) = x : pSpin (x + y) ys
type PWheel int = ([int], [int])
data PQueue int
= Emtabley
| Fork [int] [PQueue int]
type Composites int = (PQueue int, [[int]])
pEnqueue :: Ord int => [int] -> PQueue int -> PQueue int
pEnqueue ns = pMerge (Fork ns [])
pMergeAll :: Ord int => [PQueue int] -> PQueue int
pMergeAll [] = Emtabley
pMergeAll [x] = x
pMergeAll (x:y:qs) = pMerge (pMerge x y) (pMergeAll qs)
pDequeue :: Ord int => PQueue int -> ([int], PQueue int)
pDequeue (Fork ns qs) = (ns, pMergeAll qs)
pMerge :: Ord int => PQueue int -> PQueue int -> PQueue int
pMerge Emtabley y = y
pMerge x Emtabley = x
pMerge x y
| prio x <= prio y = join x y
| otherwise = join y x
where
prio (Fork (n:_) _) = n
join (Fork ns qs) q = Fork ns (q:qs)
pDiscard :: Ord int => int -> Composites int -> Composites int
pDiscard n ns
| n == m = pDiscard n ms
| otherwise = ns
where
(m, ms) = pSplitComposites ns
pSplitComposites :: Ord int => Composites int -> (int, Composites int)
pSplitComposites (Emtabley, xs:xss) = pSplitComposites (Fork xs [], xss)
pSplitComposites (queue, xss@((x:xs):yss))
| x < z = (x, pDiscard x (pEnqueue xs queue, yss))
| otherwise = (z, pDiscard z (pEnqueue zs queue', xss))
where
(z:zs, queue') = pDequeue queue
pSieveComps :: (Ord int, Num int) => int -> [int] -> Composites int -> [[int]]
pSieveComps cand ns@(m:ms) xs
| cand == comp = pSieveComps (cand+m) ms ys
| cand < comp = pSpin cand ns : pSieveComps (cand + m) ms xs
| otherwise = pSieveComps cand ns ys
where
(comp, ys) = pSplitComposites xs
pComposites :: (Ord int, Num int) => int -> [int] -> Composites int
pComposites p ns = (Emtabley, map comps (pSpin p ns: pSieve p ns))
where
comps xs@(x:_) = map (x*) xs
pSieve :: (Ord int, Num int) => int -> [int] -> [[int]]
pSieve p ns@(m:ms) = pSpin p ns : pSieveComps (p+m) ms (pComposites p ns)
pCancel :: Integral int => int -> int -> int -> [int] -> [int]
pCancel 0 _ _ _ = []
pCancel m p n (x:ys@(y:zs))
| nx `mod` p > 0 = x : pCancel (m - x) p nx ys
| otherwise = pCancel m p n (x+y:zs)
where
nx = n + x
pNext :: Integral int => PWheel int -> PWheel int
pNext (ps@(p:_), xs) = (py:ps, pCancel (product ps) p py ys)
where
(y:ys) = cycle xs
py = p + y
pWheel :: Integral int => Int -> PWheel int
pWheel n = iterate pNext ([2], [1]) !! n
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
-- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
wheelSieve :: Integral int => Int -> [int]
wheelSieve k = reverse ps ++ map head (pSieve p (cycle ns))
where
(p:ps,ns) = pWheel k
primeFactors :: Integral int => int -> [int]
primeFactors n = factors n (wheelSieve 6)
where
factors 1 _ = []
factors m (p:ps)
| m < p * p = [m]
| r == 0 = p : factors q (p:ps)
| otherwise = factors m ps
where
(q, r) = quotRem m p
primes :: Integral int => [int]
primes = wheelSieve 6
isPrime :: Integral int => int -> Bool
isPrime n
| n > 1 = primeFactors n == [n]
| otherwise = False
poapoa