結果
問題 | No.1145 Sums of Powers |
ユーザー | hotman78 |
提出日時 | 2020-07-31 21:25:44 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,093 ms / 2,000 ms |
コード長 | 14,641 bytes |
コンパイル時間 | 7,734 ms |
コンパイル使用メモリ | 434,620 KB |
実行使用メモリ | 71,608 KB |
最終ジャッジ日時 | 2024-07-06 16:15:22 |
合計ジャッジ時間 | 12,129 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 9 ms
5,376 KB |
testcase_03 | AC | 1,093 ms
71,596 KB |
testcase_04 | AC | 1,089 ms
71,600 KB |
testcase_05 | AC | 1,090 ms
71,608 KB |
コンパイルメッセージ
main.cpp:51:22: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 51 | inline auto reversed(auto v){reverse(v.begin(),v.end());return v;} | ^~~~ main.cpp:58:12: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 58 | bool chmin(auto& s,const auto& t){bool res=s>t;s=min(s,t);return res;} | ^~~~ main.cpp:58:26: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 58 | bool chmin(auto& s,const auto& t){bool res=s>t;s=min(s,t);return res;} | ^~~~ main.cpp:59:12: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 59 | bool chmax(auto& s,const auto& t){bool res=s<t;s=max(s,t);return res;} | ^~~~ main.cpp:59:26: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 59 | bool chmax(auto& s,const auto& t){bool res=s<t;s=max(s,t);return res;} | ^~~~
ソースコード
#pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #pragma GCC push_options #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx") #include<bits/stdc++.h> #include <xmmintrin.h> #include <immintrin.h> using namespace::std; __attribute__((constructor))void init(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);} #include<ext/pb_ds/assoc_container.hpp> #include<ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/priority_queue.hpp> #include<ext/pb_ds/tag_and_trait.hpp> // #include <boost/multiprecision/cpp_dec_float.hpp> // #include <boost/multiprecision/cpp_int.hpp> // namespace mp = boost::multiprecision; // typedef mp::number<mp::cpp_dec_float<0>> cdouble; // typedef mp::cpp_int cint; template<typename T>using pbds=__gnu_pbds::tree<T,__gnu_pbds::null_type,less<T>,__gnu_pbds::rb_tree_tag,__gnu_pbds::tree_order_statistics_node_update>; template<typename T>using pbds_map=__gnu_pbds::tree<T,T,less<T>,__gnu_pbds::rb_tree_tag,__gnu_pbds::tree_order_statistics_node_update>; template<typename T,typename E>using hash_map=__gnu_pbds::gp_hash_table<T,E>; template<typename T>using pqueue =__gnu_pbds::priority_queue<T, greater<T>,__gnu_pbds::rc_binomial_heap_tag>; typedef long long lint; #define INF (1LL<<60) #define IINF (1<<30) #define LINF (9223372036854775807LL) #define EPS (1e-10) #define endl ('\n') //#define MOD 1000000007LL #define MOD 998244353LL //#define MOD 18446744069414584321ULL typedef vector<lint> vec; typedef vector<vector<lint>> mat; typedef vector<vector<vector<lint>>> mat3; typedef vector<string> svec; typedef vector<vector<string>> smat; template<typename T>inline void numout(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<<i<INF/2?i:"INF";f=1;}cout<<endl;} template<typename T>inline void numout2(T t){for(auto i:t)numout(i);} template<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<<i;f=1;}cout<<endl;} template<typename T>inline void output2(T t){for(auto i:t)output(i);} template<typename T>inline void _output(T t){bool f=0;for(lint i=0;i<t.size();i++){cout<<f?"":" "<<t[i];f=1;}cout<<endl;} template<typename T>inline void _output2(T t){for(lint i=0;i<t.size();i++)output(t[i]);} #define rep(i,...) for(auto i:range(__VA_ARGS__)) #define rrep(i,...) for(auto i:reversed(range(__VA_ARGS__))) #define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i) #define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i) #define irep(i) for(lint i=0;;++i) inline vector<int64_t> range(int64_t n){vector<int64_t>v(n);iota(v.begin(),v.end(),0LL);return v;} inline vector<int64_t> range(int64_t a,int64_t b){vector<int64_t>v(b-a);iota(v.begin(),v.end(),a);return v;} inline vector<int64_t> range(int64_t a,int64_t b,int64_t c){vector<int64_t>v((b-a+c-1)/c);for(int i=0;i<(int)v.size();++i)v[i]=i?v[i-1]+c:a;return v;} inline auto reversed(auto v){reverse(v.begin(),v.end());return v;} #define all(n) begin(n),end(n) #define dist(a,b,c,d) sqrt(pow(a-c,2)+pow(b-d,2)) //inline lint gcd(lint A,lint B){return B?gcd(B,A%B):A;} //inline lint lcm(lint A,lint B){return A/gcd(A,B)*B;} // inline cint cgcd(cint A,cint B){return B?cgcd(B,A%B):A;} // inline cint clcm(cint A,cint B){return A/cgcd(A,B)*B;} bool chmin(auto& s,const auto& t){bool res=s>t;s=min(s,t);return res;} bool chmax(auto& s,const auto& t){bool res=s<t;s=max(s,t);return res;} const vector<lint> dx={1,0,-1,0,1,1,-1,-1}; const vector<lint> dy={0,1,0,-1,1,-1,1,-1}; #define SUM(v) accumulate(all(v),0LL) auto call=[](auto f,auto... args){return f(f,args...);}; template<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return vector(arg,make_vector<T>(x,args...));} template<typename T,typename P> struct FPS_BASE:vector<T>{ using vector<T>::vector; inline P operator +(T x)noexcept{return P(*static_cast<P*>(this))+=x;} inline P operator -(T x)noexcept{return P(*static_cast<P*>(this))-=x;} inline P operator *(T x)noexcept{return P(*static_cast<P*>(this))*=x;} inline P operator /(T x)noexcept{return P(*static_cast<P*>(this))/=x;} inline P operator <<(int x)noexcept{return P(*static_cast<P*>(this))<<=x;} inline P operator >>(int x)noexcept{return P(*static_cast<P*>(this))>>=x;} inline P operator +(const P& x)noexcept{return P(*static_cast<P*>(this))+=x;} inline P operator -(const P& x)noexcept{return P(*static_cast<P*>(this))-=x;} inline P operator -()noexcept{return P(1,T(0))-=P(*static_cast<P*>(this));} inline P operator *(const P& x)noexcept{return P(*static_cast<P*>(this))*=x;} inline P operator /(const P& x)noexcept{return P(*static_cast<P*>(this))/=x;} inline P operator %(const P& x)noexcept{return P(*static_cast<P*>(this))%=x;} inline P &operator +=(T x){ if(this->size()==0)this->resize(1,T(0)); (*static_cast<P*>(this))[0]+=x; return (*static_cast<P*>(this)); } inline P &operator -=(T x){ if(this->size()==0)this->resize(1,T(0)); (*static_cast<P*>(this))[0]-=x; return (*static_cast<P*>(this)); } inline P &operator *=(T x){ for(int i=0;i<(int)this->size();++i){ (*static_cast<P*>(this))[i]*=x; } return (*static_cast<P*>(this)); } inline P &operator /=(T x){ return (*static_cast<P*>(this))*=(T(1)/x); } inline P &operator <<=(int x){ P ret(x,T(0)); ret.insert(ret.end(),begin(*static_cast<P*>(this)),end(*static_cast<P*>(this))); return (*static_cast<P*>(this))=ret; } inline P &operator >>=(int x){ P ret; ret.insert(ret.end(),begin(*static_cast<P*>(this))+x,end(*static_cast<P*>(this))); return (*static_cast<P*>(this))=ret; } inline P &operator +=(const P& x){ if(this->size()<x.size())this->resize(x.size(),T(0)); for(int i=0;i<(int)x.size();++i){ (*this)[i]+=x[i]; } return (*static_cast<P*>(this)); } inline P &operator -=(const P& x){ if(this->size()<x.size())this->resize(x.size(),T(0)); for(int i=0;i<(int)x.size();++i){ (*static_cast<P*>(this))[i]-=x[i]; } return (*static_cast<P*>(this)); } inline P &operator *=(const P& x){ return (*static_cast<P*>(this))=mul((*static_cast<P*>(this)),x); } inline P &operator /=(P x){ if(this->size()<x.size()) { this->clear(); return (*static_cast<P*>(this)); } const int n=this->size()-x.size()+1; return (*static_cast<P*>(this)) = (rev().pre(n)*x.rev().inv(n)).pre(n).rev(n); } inline P &operator %=(const P& x){ return ((*static_cast<P*>(this))-=*static_cast<P*>(this)/x*x); } inline P& shrink(){while((*static_cast<P*>(this)).back()==0)(*static_cast<P*>(this)).pop_back();return (*static_cast<P*>(this));} inline P pre(int sz)const{ return P(begin(*this),begin(*this)+min((int)this->size(),sz)); } inline P rev(int deg=-1){ P ret(*static_cast<P*>(this)); if(deg!=-1)ret.resize(deg,T(0)); reverse(begin(ret),end(ret)); return ret; } P inv(int deg=-1){ assert((*static_cast<P*>(this))[0]!=T(0)); const int n=deg==-1?this->size():deg; P ret({T(1)/(*this)[0]}); for(int i=1;i<n;i<<=1){ ret=(ret*T(2)-ret*ret*pre(i<<1)).pre(i<<1); } return ret.pre(n); } inline P dot(const P& x){ P ret(*static_cast<P*>(this)); for(int i=0;i<int(min(this->size(),x.size()));++i){ ret[i]*=x[i]; } return ret; } P diff(){ P ret(*static_cast<P*>(this)); for(int i=0;i<(int)ret.size();i++){ ret[i]*=i; } return ret>>1; } P integral(){ P ret(*static_cast<P*>(this)); for(int i=0;i<(int)ret.size();i++){ ret[i]/=i+1; } return ret<<1; } P log(int deg=-1){ assert((*this)[0]==T(1)); const int n=deg==-1?this->size():deg; return (diff()*inv(n)).pre(n-1).integral(); } P exp(int deg=-1){ assert((*this)[0]==T(0)); const int n=deg==-1?this->size():deg; P ret({T(1)}); for(int i=1;i<n;i<<=1){ ret=ret*(pre(i<<1)+1-ret.log(i<<1)).pre(i<<1); } return ret.pre(n); } P sqrt(int deg=-1){ const int n=deg==-1?this->size():deg; if((*this)[0]==T(0)) { for(int i=1;i<(int)this->size();i++) { if((*this)[i]!=T(0)) { if(i&1)return{}; if(n-i/2<=0)break; auto ret=(*this>>i).sqrt(n-i/2)<<(i/2); if((int)ret.size()<n)ret.resize(n,T(0)); return ret; } } return P(n,0); } P ret({T(1)}); for(int i=1;i<n;i<<=1){ ret=(ret+pre(i<<1)*ret.inv(i<<1)).pre(i<<1)/T(2); } return ret.pre(n); } T eval(T x){ T res=0; for(int i=(int)this->size()-1;i>=0;--i){ res*=x; res+=(*this)[i]; } return res; } vector<T> multipoint_eval(const vector<T>&x){ const int n=x.size(); P* v=new P[2*n-1]; for(int i=0;i<n;i++)v[i+n-1]={T()-x[i],T(1)}; for(int i=n-2;i>=0;i--){v[i]=v[i*2+1]*v[i*2+2];} v[0]=P(*static_cast<P*>(this))%v[0];v[0].shrink(); for(int i=1;i<n*2-1;i++){ v[i]=v[(i-1)/2]%v[i]; v[i].shrink(); } vector<T>res(n); for(int i=0;i<n;i++)res[i]=v[i+n-1][0]; return res; } virtual P mul(P s,P t)=0; }; template<typename Mint> struct fps9:FPS_BASE<Mint,fps9<Mint>>{ using FPS_BASE<Mint,fps9<Mint>>::FPS_BASE; using P=fps9<Mint>; P mul(P s,P t)override{ const int n=s.size()+t.size()-1; int h=1; while((1<<h)<n)h++; s.resize((1<<h),Mint(0)); t.resize((1<<h),Mint(0)); return ntt(ntt(s,h,0).dot(ntt(t,h,0)),h,1).pre(n); } P ntt(P v,const int& h,const bool& inv){ const int n=v.size(); assert(Mint::get_mod()>=3&&Mint::get_mod()%2==1); P tmp(n,Mint()); Mint root=inv?Mint(Mint::root()).inv():Mint::root(); for(int b=n>>1;b>=1;b>>=1,v.swap(tmp)){ Mint w=root.pow((Mint::get_mod()-1)/(n/b)),p=1; for(int i=0;i<n;i+=b*2,p*=w)for(int j=0;j<b;++j){ v[i+j+b]*=p; tmp[i/2+j]=v[i+j]+v[i+b+j]; tmp[n/2+i/2+j]=v[i+j]-v[i+b+j]; } } if(inv)v/=n; return v; } }; class mint { using u64 = std::uint_fast64_t; public: u64 a; constexpr mint(const long long x = 0)noexcept:a(x>=0?x%get_mod():get_mod()-(-x)%get_mod()){} constexpr u64 &value()noexcept{return a;} constexpr const u64 &value() const noexcept {return a;} constexpr mint operator+(const mint rhs)const noexcept{return mint(*this) += rhs;} constexpr mint operator-(const mint rhs)const noexcept{return mint(*this)-=rhs;} constexpr mint operator*(const mint rhs) const noexcept {return mint(*this) *= rhs;} constexpr mint operator/(const mint rhs) const noexcept {return mint(*this) /= rhs;} constexpr mint &operator+=(const mint rhs) noexcept { a += rhs.a; if (a >= get_mod())a -= get_mod(); return *this; } constexpr mint &operator-=(const mint rhs) noexcept { if (a<rhs.a)a += get_mod(); a -= rhs.a; return *this; } constexpr mint &operator*=(const mint rhs) noexcept { a = a * rhs.a % get_mod(); return *this; } constexpr mint operator++(int n) noexcept { a += 1; if (a >= get_mod())a -= get_mod(); return *this; } constexpr mint operator--(int n) noexcept { if (a<1)a += get_mod(); a -= 1; return *this; } constexpr pair<int, int> extgcd(int a, int b) { int s = a, sx = 1, sy = 0, t = b, tx = 0, ty = 1; while (s % t != 0) { int temp = s / t; int u = s - t * temp; int ux = sx - tx * temp; int uy = sy - ty * temp; s = t; sx = tx; sy = ty; t = u; tx = ux; ty = uy; } return {tx, ty}; } constexpr mint &operator/=(mint rhs) noexcept { return (*this)*=mint(extgcd(rhs.a,get_mod()).first); } constexpr bool operator==(mint x) noexcept { return a==x.a; } constexpr bool operator!=(mint x) noexcept { return a!=x.a; } constexpr static int root(){ mint root = 2; while(root.pow((get_mod()-1)>>1).a==1)root++; return root.a; } constexpr mint pow(long long n){ long long x=a; mint ret = 1; while(n>0) { if(n&1)(ret*=x); (x*=x)%=get_mod(); n>>=1; } return ret; } constexpr mint inv(){ return pow(get_mod()-2); } static vector<mint> fac,ifac; static bool init; constexpr static int mx=10000001; void build(){ init=0; fac.resize(mx); ifac.resize(mx); fac[0]=1,ifac[0]=1; for(int i=1;i<mx;i++)fac[i]=fac[i-1]*i; ifac[mx-1]=fac[mx-1].inv(); for(int i=mx-2;i>=0;i--)ifac[i]=ifac[i+1]*(i+1); } mint comb(lint b){ if(init)build(); if(a==0&&b==0)return 1; if((lint)a<b||a<0)return 0; return fac[a]*ifac[a-b]*ifac[b]; } mint fact(){ if(init)build(); return fac[a]; } mint fact_inv(){ if(init)build(); return ifac[a]; } friend ostream& operator<<(ostream& lhs, const mint& rhs) noexcept { lhs << rhs.a; return lhs; } friend istream& operator>>(istream& lhs,mint& rhs) noexcept { lhs >> rhs.a; return lhs; } constexpr static u64 get_mod(){return MOD;} }; vector<mint> mint::fac; vector<mint> mint::ifac; bool mint::init=1; int main(){ lint n,k; cin>>n>>k; vec a(n); rep(i,n)cin>>a[i]; vector<pair<fps9<mint>,fps9<mint>>>c(2*n-1); rep(i,n){ c[i+n-1]=make_pair(fps9<mint>{1},fps9<mint>{1,-a[i]}); } auto merge=[&](auto s,auto t){ return make_pair(s.first*t.second+s.second*t.first,s.second*t.second); }; rrep(i,n-1){ c[i]=merge(c[i*2+1],c[i*2+2]); } auto e=(c[0].first*(c[0].second.inv(k+1))).pre(k+1); vector<mint> ans(k); rep(i,1,k+1){ ans[i-1]=e[i]; } output(ans); }