結果

問題 No.1140 EXPotentiaLLL!
ユーザー kimiyuki
提出日時 2020-07-31 21:38:23
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 3,739 bytes
コンパイル時間 1,799 ms
コンパイル使用メモリ 91,276 KB
最終ジャッジ日時 2025-01-12 09:29:29
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 5 WA * 7
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "main.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1140"
#include <cstdio>
#line 2 "/home/user/Library/utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 2 "/home/user/Library/number/primes.hpp"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <map>
#include <vector>
#line 8 "/home/user/Library/number/primes.hpp"
/**
* @note O(\sqrt{n})
*/
struct prepared_primes {
int size;
std::vector<int> sieve;
std::vector<int> primes;
prepared_primes(int size_)
: size(size_) {
sieve.resize(size);
REP3 (p, 2, size) if (sieve[p] == 0) {
primes.push_back(p);
for (int k = p; k < size; k += p) {
if (sieve[k] == 0) {
sieve[k] = p;
}
}
}
}
std::vector<int64_t> list_prime_factors(int64_t n) {
assert (1 <= n and n < (int64_t)size * size);
std::vector<int64_t> result;
// trial division for large part
for (int p : primes) {
if (n < size or n < (int64_t)p * p) {
break;
}
while (n % p == 0) {
n /= p;
result.push_back(p);
}
}
// small part
if (n == 1) {
// nop
} else if (n < size) {
while (n != 1) {
result.push_back(sieve[n]);
n /= sieve[n];
}
} else {
result.push_back(n);
}
assert (std::is_sorted(ALL(result)));
return result;
}
/**
* @note O(1) if n < size; O(sqrt n) if size <= n < size^2
*/
bool is_prime(int64_t n) {
assert (1 <= n and n < (int64_t)size * size);
if (n < size) {
return sieve[n] == n;
}
for (int p : primes) {
if (n < (int64_t)p * p) {
break;
}
if (n % p == 0) {
return false;
}
}
return true;
}
std::vector<int64_t> list_all_factors(int64_t n) {
auto p = list_prime_factors(n);
std::vector<int64_t> d;
d.push_back(1);
for (int l = 0; l < p.size(); ) {
int r = l + 1;
while (r < p.size() and p[r] == p[l]) ++ r;
int n = d.size();
REP (k1, r - l) {
REP (k2, n) {
d.push_back(d[d.size() - n] * p[l]);
}
}
l = r;
}
return d;
}
std::map<int64_t, int> list_prime_factors_as_map(int64_t n) {
std::map<int64_t, int> cnt;
for (int64_t p : list_prime_factors(n)) {
++ cnt[p];
}
return cnt;
}
int64_t euler_totient(int64_t n) {
int64_t phi = 1;
int64_t last = -1;
for (int64_t p : list_prime_factors(n)) {
if (last != p) {
last = p;
phi *= p - 1;
} else {
phi *= p;
}
}
return phi;
}
};
#line 5 "main.cpp"
using namespace std;
prepared_primes primes(1e6 + 100);
int solve(long long a, int p) {
if (a % p == 0) return 0;
return primes.is_prime(p) ? 1 : -1;
}
int main() {
int t; scanf("%d", &t);
while (t --) {
long long a; int p; scanf("%lld%d", &a, &p);
auto ans = solve(a, p);
printf("%d\n", ans);
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0