結果
問題 | No.1140 EXPotentiaLLL! |
ユーザー | kimiyuki |
提出日時 | 2020-07-31 21:39:23 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,822 ms / 2,000 ms |
コード長 | 3,756 bytes |
コンパイル時間 | 663 ms |
コンパイル使用メモリ | 69,296 KB |
実行使用メモリ | 7,304 KB |
最終ジャッジ日時 | 2024-07-06 17:03:45 |
合計ジャッジ時間 | 10,526 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,822 ms
7,176 KB |
testcase_01 | AC | 194 ms
7,176 KB |
testcase_02 | AC | 1,807 ms
7,304 KB |
testcase_03 | AC | 228 ms
7,180 KB |
testcase_04 | AC | 177 ms
7,204 KB |
testcase_05 | AC | 272 ms
7,176 KB |
testcase_06 | AC | 261 ms
7,304 KB |
testcase_07 | AC | 1,179 ms
7,300 KB |
testcase_08 | AC | 11 ms
7,304 KB |
testcase_09 | AC | 11 ms
7,304 KB |
testcase_10 | AC | 10 ms
7,300 KB |
testcase_11 | AC | 12 ms
7,172 KB |
testcase_12 | AC | 11 ms
7,304 KB |
ソースコード
#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1140" #include <cstdio> #line 2 "/home/user/Library/utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 2 "/home/user/Library/number/primes.hpp" #include <algorithm> #include <cassert> #include <cstdint> #include <map> #include <vector> #line 8 "/home/user/Library/number/primes.hpp" /** * @note O(\sqrt{n}) */ struct prepared_primes { int size; std::vector<int> sieve; std::vector<int> primes; prepared_primes(int size_) : size(size_) { sieve.resize(size); REP3 (p, 2, size) if (sieve[p] == 0) { primes.push_back(p); for (int k = p; k < size; k += p) { if (sieve[k] == 0) { sieve[k] = p; } } } } std::vector<int64_t> list_prime_factors(int64_t n) { assert (1 <= n and n < (int64_t)size * size); std::vector<int64_t> result; // trial division for large part for (int p : primes) { if (n < size or n < (int64_t)p * p) { break; } while (n % p == 0) { n /= p; result.push_back(p); } } // small part if (n == 1) { // nop } else if (n < size) { while (n != 1) { result.push_back(sieve[n]); n /= sieve[n]; } } else { result.push_back(n); } assert (std::is_sorted(ALL(result))); return result; } /** * @note O(1) if n < size; O(sqrt n) if size <= n < size^2 */ bool is_prime(int64_t n) { assert (1 <= n and n < (int64_t)size * size); if (n < size) { return sieve[n] == n; } for (int p : primes) { if (n < (int64_t)p * p) { break; } if (n % p == 0) { return false; } } return true; } std::vector<int64_t> list_all_factors(int64_t n) { auto p = list_prime_factors(n); std::vector<int64_t> d; d.push_back(1); for (int l = 0; l < p.size(); ) { int r = l + 1; while (r < p.size() and p[r] == p[l]) ++ r; int n = d.size(); REP (k1, r - l) { REP (k2, n) { d.push_back(d[d.size() - n] * p[l]); } } l = r; } return d; } std::map<int64_t, int> list_prime_factors_as_map(int64_t n) { std::map<int64_t, int> cnt; for (int64_t p : list_prime_factors(n)) { ++ cnt[p]; } return cnt; } int64_t euler_totient(int64_t n) { int64_t phi = 1; int64_t last = -1; for (int64_t p : list_prime_factors(n)) { if (last != p) { last = p; phi *= p - 1; } else { phi *= p; } } return phi; } }; #line 5 "main.cpp" using namespace std; prepared_primes primes(1e6 + 100); int solve(long long a, int p) { if (not primes.is_prime(p)) return -1; if (a % p == 0) return 0; return 1; } int main() { int t; scanf("%d", &t); while (t --) { long long a; int p; scanf("%lld%d", &a, &p); auto ans = solve(a, p); printf("%d\n", ans); } return 0; }