結果
問題 | No.1142 XOR と XOR |
ユーザー | LayCurse |
提出日時 | 2020-07-31 21:43:31 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 12 ms / 2,000 ms |
コード長 | 6,701 bytes |
コンパイル時間 | 2,740 ms |
コンパイル使用メモリ | 213,848 KB |
実行使用メモリ | 6,016 KB |
最終ジャッジ日時 | 2024-11-08 03:21:35 |
合計ジャッジ時間 | 4,317 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
5,248 KB |
testcase_01 | AC | 5 ms
5,248 KB |
testcase_02 | AC | 5 ms
5,248 KB |
testcase_03 | AC | 12 ms
6,016 KB |
testcase_04 | AC | 10 ms
5,760 KB |
testcase_05 | AC | 9 ms
5,504 KB |
testcase_06 | AC | 10 ms
5,760 KB |
testcase_07 | AC | 10 ms
5,888 KB |
testcase_08 | AC | 11 ms
6,016 KB |
testcase_09 | AC | 11 ms
6,016 KB |
testcase_10 | AC | 11 ms
6,016 KB |
testcase_11 | AC | 5 ms
5,248 KB |
testcase_12 | AC | 6 ms
5,248 KB |
testcase_13 | AC | 5 ms
5,248 KB |
testcase_14 | AC | 9 ms
5,248 KB |
testcase_15 | AC | 8 ms
5,248 KB |
testcase_16 | AC | 5 ms
5,248 KB |
testcase_17 | AC | 8 ms
5,248 KB |
testcase_18 | AC | 6 ms
5,248 KB |
testcase_19 | AC | 11 ms
5,760 KB |
testcase_20 | AC | 8 ms
5,248 KB |
testcase_21 | AC | 8 ms
5,248 KB |
testcase_22 | AC | 6 ms
5,248 KB |
testcase_23 | AC | 10 ms
5,632 KB |
testcase_24 | AC | 10 ms
5,888 KB |
testcase_25 | AC | 8 ms
5,248 KB |
testcase_26 | AC | 10 ms
5,760 KB |
testcase_27 | AC | 9 ms
5,504 KB |
ソースコード
#pragma GCC optimize ("Ofast") #include<bits/stdc++.h> using namespace std; #define MD (1000000007U) struct Modint{ unsigned val; Modint(){ val=0; } Modint(int a){ val = ord(a); } Modint(unsigned a){ val = ord(a); } Modint(long long a){ val = ord(a); } Modint(unsigned long long a){ val = ord(a); } inline unsigned ord(unsigned a){ return a%MD; } inline unsigned ord(int a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned ord(unsigned long long a){ return a%MD; } inline unsigned ord(long long a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned get(){ return val; } inline Modint &operator+=(Modint a){ val += a.val; if(val >= MD){ val -= MD; } return *this; } inline Modint &operator-=(Modint a){ if(val < a.val){ val = val + MD - a.val; } else{ val -= a.val; } return *this; } inline Modint &operator*=(Modint a){ val = ((unsigned long long)val*a.val)%MD; return *this; } inline Modint &operator/=(Modint a){ return *this *= a.inverse(); } inline Modint operator+(Modint a){ return Modint(*this)+=a; } inline Modint operator-(Modint a){ return Modint(*this)-=a; } inline Modint operator*(Modint a){ return Modint(*this)*=a; } inline Modint operator/(Modint a){ return Modint(*this)/=a; } inline Modint operator+(int a){ return Modint(*this)+=Modint(a); } inline Modint operator-(int a){ return Modint(*this)-=Modint(a); } inline Modint operator*(int a){ return Modint(*this)*=Modint(a); } inline Modint operator/(int a){ return Modint(*this)/=Modint(a); } inline Modint operator+(long long a){ return Modint(*this)+=Modint(a); } inline Modint operator-(long long a){ return Modint(*this)-=Modint(a); } inline Modint operator*(long long a){ return Modint(*this)*=Modint(a); } inline Modint operator/(long long a){ return Modint(*this)/=Modint(a); } inline Modint operator-(void){ Modint res; if(val){ res.val=MD-val; } else{ res.val=0; } return res; } inline operator bool(void){ return val!=0; } inline operator int(void){ return get(); } inline operator long long(void){ return get(); } inline Modint inverse(){ int a = val; int b = MD; int u = 1; int v = 0; int t; Modint res; while(b){ t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if(u < 0){ u += MD; } res.val = u; return res; } inline Modint pw(unsigned long long b){ Modint a(*this); Modint res; res.val = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } inline bool operator==(int a){ return ord(a)==val; } inline bool operator!=(int a){ return ord(a)!=val; } } ; inline Modint operator+(int a, Modint b){ return Modint(a)+=b; } inline Modint operator-(int a, Modint b){ return Modint(a)-=b; } inline Modint operator*(int a, Modint b){ return Modint(a)*=b; } inline Modint operator/(int a, Modint b){ return Modint(a)/=b; } inline Modint operator+(long long a, Modint b){ return Modint(a)+=b; } inline Modint operator-(long long a, Modint b){ return Modint(a)-=b; } inline Modint operator*(long long a, Modint b){ return Modint(a)*=b; } inline Modint operator/(long long a, Modint b){ return Modint(a)/=b; } inline int my_getchar_unlocked(){ static char buf[1048576]; static int s = 1048576; static int e = 1048576; if(s == e && e == 1048576){ e = fread_unlocked(buf, 1, 1048576, stdin); s = 0; } if(s == e){ return EOF; } return buf[s++]; } inline void rd(int &x){ int k; int m=0; x=0; for(;;){ k = my_getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = my_getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } struct MY_WRITER{ char buf[1048576]; int s; int e; MY_WRITER(){ s = 0; e = 1048576; } ~MY_WRITER(){ if(s){ fwrite_unlocked(buf, 1, s, stdout); } } } ; MY_WRITER MY_WRITER_VAR; void my_putchar_unlocked(int a){ if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){ fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout); MY_WRITER_VAR.s = 0; } MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a; } inline void wt_L(char a){ my_putchar_unlocked(a); } inline void wt_L(int x){ int s=0; int m=0; char f[10]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ my_putchar_unlocked('-'); } while(s--){ my_putchar_unlocked(f[s]+'0'); } } inline void wt_L(Modint x){ int i; i = (int)x; wt_L(i); } int N; int M; int K; int A[200000]; int B[200000]; long long cnt[1024]; Modint ca[1024]; Modint cb[1024]; int main(){ int i; int j; int k; Modint res = 0; rd(N); rd(M); rd(K); { int Lj4PdHRW; for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){ rd(A[Lj4PdHRW]); } } { int e98WHCEY; for(e98WHCEY=(0);e98WHCEY<(M);e98WHCEY++){ rd(B[e98WHCEY]); } } for(i=(0);i<(1024);i++){ cnt[i] = 0; } cnt[k = 0]++; for(i=(0);i<(N);i++){ cnt[k ^= A[i]]++; } for(i=(0);i<(1024);i++){ ca[0] += cnt[i] * (cnt[i]-1) / 2; } for(i=(0);i<(1024);i++){ for(j=(i+1);j<(1024);j++){ ca[i^j] += cnt[i] * cnt[j]; } } for(i=(0);i<(1024);i++){ cnt[i] = 0; } cnt[k = 0]++; for(i=(0);i<(M);i++){ cnt[k ^= B[i]]++; } for(i=(0);i<(1024);i++){ cb[0] += cnt[i] * (cnt[i]-1) / 2; } for(i=(0);i<(1024);i++){ for(j=(i+1);j<(1024);j++){ cb[i^j] += cnt[i] * cnt[j]; } } for(i=(0);i<(1024);i++){ res += ca[i] * cb[i^K]; } wt_L(res); wt_L('\n'); return 0; } // cLay varsion 20200509-1 // --- original code --- // int N, M, K, A[2d5], B[2d5]; // ll cnt[1024]; // Modint ca[1024], cb[1024]; // { // int i, j, k; // Modint res = 0; // rd(N,M,K,A(N),B(M)); // // rep(i,1024) cnt[i] = 0; // cnt[k = 0]++; // rep(i,N) cnt[k ^= A[i]]++; // rep(i,1024) ca[0] += cnt[i] * (cnt[i]-1) / 2; // rep(i,1024) rep(j,i+1,1024) ca[i^j] += cnt[i] * cnt[j]; // // rep(i,1024) cnt[i] = 0; // cnt[k = 0]++; // rep(i,M) cnt[k ^= B[i]]++; // rep(i,1024) cb[0] += cnt[i] * (cnt[i]-1) / 2; // rep(i,1024) rep(j,i+1,1024) cb[i^j] += cnt[i] * cnt[j]; // // rep(i,1024) res += ca[i] * cb[i^K]; // wt(res); // }