結果

問題 No.1142 XOR と XOR
ユーザー kimiyukikimiyuki
提出日時 2020-07-31 22:15:02
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 5,108 bytes
コンパイル時間 1,875 ms
コンパイル使用メモリ 203,540 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-06 18:34:03
合計ジャッジ時間 8,099 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 WA -
testcase_04 AC 277 ms
6,944 KB
testcase_05 AC 231 ms
6,940 KB
testcase_06 AC 288 ms
6,940 KB
testcase_07 WA -
testcase_08 AC 353 ms
6,940 KB
testcase_09 AC 351 ms
6,944 KB
testcase_10 AC 357 ms
6,940 KB
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 1 ms
6,940 KB
testcase_13 AC 1 ms
6,944 KB
testcase_14 AC 188 ms
6,940 KB
testcase_15 AC 180 ms
6,940 KB
testcase_16 AC 16 ms
6,940 KB
testcase_17 WA -
testcase_18 AC 59 ms
6,940 KB
testcase_19 AC 286 ms
6,940 KB
testcase_20 AC 182 ms
6,940 KB
testcase_21 AC 111 ms
6,940 KB
testcase_22 AC 64 ms
6,940 KB
testcase_23 AC 263 ms
6,940 KB
testcase_24 AC 302 ms
6,944 KB
testcase_25 AC 170 ms
6,940 KB
testcase_26 WA -
testcase_27 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#include <bits/stdc++.h>
#line 2 "/home/user/Library/utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 4 "/home/user/Library/modulus/modpow.hpp"

inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {
    assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);
    uint_fast64_t y = 1;
    for (; k; k >>= 1) {
        if (k & 1) (y *= x) %= MOD;
        (x *= x) %= MOD;
    }
    assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);
    return y;
}
#line 5 "/home/user/Library/modulus/modinv.hpp"

inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {
    assert (0 <= value and value < MOD);
    if (value == 0) return -1;
    int64_t a = value, b = MOD;
    int64_t x = 0, y = 1;
    for (int64_t u = 1, v = 0; a; ) {
        int64_t q = b / a;
        x -= q * u; std::swap(x, u);
        y -= q * v; std::swap(y, v);
        b -= q * a; std::swap(b, a);
    }
    if (not (value * x + MOD * y == b and b == 1)) return -1;
    if (x < 0) x += MOD;
    assert (0 <= x and x < MOD);
    return x;
}

inline int32_t modinv(int32_t x, int32_t MOD) {
    int32_t y = modinv_nocheck(x, MOD);
    assert (y != -1);
    return y;
}
#line 6 "/home/user/Library/modulus/mint.hpp"

/**
 * @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$
 */
template <int32_t MOD>
struct mint {
    int32_t value;
    mint() : value() {}
    mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}
    mint(int32_t value_, std::nullptr_t) : value(value_) {}
    explicit operator bool() const { return value; }
    inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }
    inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }
    inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }
    inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
    inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value <    0) this->value += MOD; return *this; }
    inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }
    inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }
    inline bool operator == (mint<MOD> other) const { return value == other.value; }
    inline bool operator != (mint<MOD> other) const { return value != other.value; }
    inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }
    inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }
    inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }
    inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }
};
template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }
template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }
template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }
template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }
template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }
template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }
#line 4 "main.cpp"
using namespace std;

constexpr int MOD = 1000000007;
constexpr int SIZE = 1024;

array<int64_t, SIZE> solve1(int n, const vector<int> & a) {
    array<int64_t, SIZE> cnt = {};
    array<int64_t, SIZE> f = {};
    int x = 0;
    cnt[x] += 1;
    REP (i, n) {
        x ^= a[i];
        REP (y, SIZE) {
            f[x ^ y] += cnt[y];
        }
        cnt[x] += 1;
    }
    assert (accumulate(ALL(f), 0ll) == (int64_t)n * (n + 1) / 2);
    return f;
}

mint<MOD> solve(int n, int m, int k, const vector<int> & a, const vector<int> & b) {
    array<int64_t, SIZE> f = solve1(n, a);
    array<int64_t, SIZE> g = solve1(m, b);
    mint<MOD> ans = 0;
    REP (x, SIZE) {
        ans += f[x] * g[x ^ k];
    }
    return ans;
}

// generated by online-judge-template-generator v4.4.0 (https://github.com/kmyk/online-judge-template-generator)
int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    constexpr char endl = '\n';
    int N, M;
    int K;
    cin >> N;
    vector<int> a(N);
    cin >> M;
    vector<int> b(M);
    cin >> K;
    REP (i, N) {
        cin >> a[i];
    }
    REP (i, M) {
        cin >> b[i];
    }
    auto ans = solve(N, M, K, a, b);
    cout << ans << endl;
    return 0;
}
0