結果
問題 | No.1142 XOR と XOR |
ユーザー |
|
提出日時 | 2020-07-31 22:15:02 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,108 bytes |
コンパイル時間 | 2,094 ms |
コンパイル使用メモリ | 196,168 KB |
最終ジャッジ日時 | 2025-01-12 10:28:38 |
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 20 WA * 5 |
ソースコード
#line 1 "main.cpp"#include <bits/stdc++.h>#line 2 "/home/user/Library/utils/macros.hpp"#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))#define ALL(x) std::begin(x), std::end(x)#line 4 "/home/user/Library/modulus/modpow.hpp"inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);uint_fast64_t y = 1;for (; k; k >>= 1) {if (k & 1) (y *= x) %= MOD;(x *= x) %= MOD;}assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);return y;}#line 5 "/home/user/Library/modulus/modinv.hpp"inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {assert (0 <= value and value < MOD);if (value == 0) return -1;int64_t a = value, b = MOD;int64_t x = 0, y = 1;for (int64_t u = 1, v = 0; a; ) {int64_t q = b / a;x -= q * u; std::swap(x, u);y -= q * v; std::swap(y, v);b -= q * a; std::swap(b, a);}if (not (value * x + MOD * y == b and b == 1)) return -1;if (x < 0) x += MOD;assert (0 <= x and x < MOD);return x;}inline int32_t modinv(int32_t x, int32_t MOD) {int32_t y = modinv_nocheck(x, MOD);assert (y != -1);return y;}#line 6 "/home/user/Library/modulus/mint.hpp"/*** @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$*/template <int32_t MOD>struct mint {int32_t value;mint() : value() {}mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}mint(int32_t value_, std::nullptr_t) : value(value_) {}explicit operator bool() const { return value; }inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }inline bool operator == (mint<MOD> other) const { return value == other.value; }inline bool operator != (mint<MOD> other) const { return value != other.value; }inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }};template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }#line 4 "main.cpp"using namespace std;constexpr int MOD = 1000000007;constexpr int SIZE = 1024;array<int64_t, SIZE> solve1(int n, const vector<int> & a) {array<int64_t, SIZE> cnt = {};array<int64_t, SIZE> f = {};int x = 0;cnt[x] += 1;REP (i, n) {x ^= a[i];REP (y, SIZE) {f[x ^ y] += cnt[y];}cnt[x] += 1;}assert (accumulate(ALL(f), 0ll) == (int64_t)n * (n + 1) / 2);return f;}mint<MOD> solve(int n, int m, int k, const vector<int> & a, const vector<int> & b) {array<int64_t, SIZE> f = solve1(n, a);array<int64_t, SIZE> g = solve1(m, b);mint<MOD> ans = 0;REP (x, SIZE) {ans += f[x] * g[x ^ k];}return ans;}// generated by online-judge-template-generator v4.4.0 (https://github.com/kmyk/online-judge-template-generator)int main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);constexpr char endl = '\n';int N, M;int K;cin >> N;vector<int> a(N);cin >> M;vector<int> b(M);cin >> K;REP (i, N) {cin >> a[i];}REP (i, M) {cin >> b[i];}auto ans = solve(N, M, K, a, b);cout << ans << endl;return 0;}