結果
| 問題 |
No.1143 面積Nの三角形
|
| コンテスト | |
| ユーザー |
heno239
|
| 提出日時 | 2020-07-31 22:22:16 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,817 bytes |
| コンパイル時間 | 1,257 ms |
| コンパイル使用メモリ | 120,256 KB |
| 実行使用メモリ | 9,628 KB |
| 最終ジャッジ日時 | 2024-07-06 18:43:49 |
| 合計ジャッジ時間 | 7,743 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 TLE * 1 |
| other | AC * 16 TLE * 2 |
ソースコード
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acos(-1.0);
ll mod_pow(ll x, ll n, ll m) {
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
struct modint {
ll n;
modint() :n(0) { ; }
modint(ll m) :n(m) {
if (n >= mod)n %= mod;
else if (n < 0)n = (n % mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, int n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
const int max_n = 1 << 17;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
const int sup = 1000001;
int memo[sup];
void init() {
fill(memo, memo + sup, -1);
for (int i = 0; i <sup; i++) {
if (i * i >= sup)break;
memo[i * i] = i;
}
}
ll calc_sq(ll x) {
if (x < 0)return -1;
if (x < sup)return memo[x];
ld d = sqrt(x);
ll dd = d + (1e-8);
if (dd * dd == x)return dd;
return -1;
}
void solve() {
ll n; cin >> n;
ll z = 16 * n * n;
vector<ll> ds;
for (ll d = 1; d <= 4 * n; d++) {
if (z % d == 0) {
ds.push_back(z / d);
ds.push_back(d);
}
}
sort(all(ds));
ds.erase(unique(all(ds)), ds.end());
ll ans = 0;
int tmp = 0;
for (ll a = 1; a <= 100000; a++) {
if (3 * a * a * a > z) {
break;
}
for (ll d : ds) {
ll x2 = a * a + d;
ll y2 = a * a - z/d;
if (x2 < 4*a*a || y2 < 0)continue;
if ((x2 + y2) % 2)continue;
ll dif = x2 - y2;
if (dif < 0 || dif % 4 || dif < 4 * a * a)continue;
tmp++;
ll x = calc_sq(x2);
if (x < 0)continue;
ll y = calc_sq(y2);
if (y < 0)continue;
ll b = (x + y) / 2;
ll c = (x - y) / 2;
if (b >= a && c >= a)ans++;
}
}
//cout << tmp << "\n";
cout << ans << "\n";
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed << setprecision(10);
//init_f();
//init();
//int t; cin >> t; rep(i, t)
init();
solve();
return 0;
}
heno239