結果
問題 | No.1145 Sums of Powers |
ユーザー | beet |
提出日時 | 2020-07-31 22:38:12 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 901 ms / 2,000 ms |
コード長 | 9,321 bytes |
コンパイル時間 | 3,207 ms |
コンパイル使用メモリ | 223,556 KB |
最終ジャッジ日時 | 2025-01-12 10:54:35 |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 6 |
ソースコード
#include <bits/stdc++.h> using namespace std; template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;} template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;} using Int = long long; const char newl = '\n'; template<typename T,T MOD = 1000000007> struct Mint{ static constexpr T mod = MOD; T v; Mint():v(0){} Mint(signed v):v(v){} Mint(long long t){v=t%MOD;if(v<0) v+=MOD;} Mint pow(long long k){ Mint res(1),tmp(v); while(k){ if(k&1) res*=tmp; tmp*=tmp; k>>=1; } return res; } static Mint add_identity(){return Mint(0);} static Mint mul_identity(){return Mint(1);} Mint inv(){return pow(MOD-2);} Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;} Mint& operator/=(Mint a){return (*this)*=a.inv();} Mint operator+(Mint a) const{return Mint(v)+=a;} Mint operator-(Mint a) const{return Mint(v)-=a;} Mint operator*(Mint a) const{return Mint(v)*=a;} Mint operator/(Mint a) const{return Mint(v)/=a;} Mint operator-() const{return v?Mint(MOD-v):Mint(v);} bool operator==(const Mint a)const{return v==a.v;} bool operator!=(const Mint a)const{return v!=a.v;} bool operator <(const Mint a)const{return v <a.v;} static Mint comb(long long n,int k){ Mint num(1),dom(1); for(int i=0;i<k;i++){ num*=Mint(n-i); dom*=Mint(i+1); } return num/dom; } }; template<typename T,T MOD> constexpr T Mint<T, MOD>::mod; template<typename T,T MOD> ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;} template<typename M_> class Enumeration{ using M = M_; protected: static vector<M> fact,finv,invs; public: static void init(int n){ n=min<decltype(M::mod)>(n,M::mod-1); int m=fact.size(); if(n<m) return; fact.resize(n+1,1); finv.resize(n+1,1); invs.resize(n+1,1); if(m==0) m=1; for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i); finv[n]=M(1)/fact[n]; for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i); for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1]; } static M Fact(int n){ init(n); return fact[n]; } static M Finv(int n){ init(n); return finv[n]; } static M Invs(int n){ init(n); return invs[n]; } static M C(int n,int k){ if(n<k||k<0) return M(0); init(n); return fact[n]*finv[n-k]*finv[k]; } static M P(int n,int k){ if(n<k||k<0) return M(0); init(n); return fact[n]*finv[n-k]; } // put n identical balls into k distinct boxes static M H(int n,int k){ if(n<0||k<0) return M(0); if(!n&&!k) return M(1); init(n+k); return C(n+k-1,n); } }; template<typename M> vector<M> Enumeration<M>::fact=vector<M>(); template<typename M> vector<M> Enumeration<M>::finv=vector<M>(); template<typename M> vector<M> Enumeration<M>::invs=vector<M>(); constexpr int bmds(int x){ const int v[] = {1012924417, 924844033, 998244353, 897581057, 645922817}; return v[x]; } constexpr int brts(int x){ const int v[] = {5, 5, 3, 3, 3}; return v[x]; } template<int X> struct NTT{ static constexpr int md = bmds(X); static constexpr int rt = brts(X); using M = Mint<int, md>; vector< vector<M> > rts,rrts; void ensure_base(int n){ if((int)rts.size()>=n) return; rts.resize(n);rrts.resize(n); for(int i=1;i<n;i<<=1){ if(!rts[i].empty()) continue; M w=M(rt).pow((md-1)/(i<<1)); M rw=w.inv(); rts[i].resize(i);rrts[i].resize(i); rts[i][0]=M(1);rrts[i][0]=M(1); for(int k=1;k<i;k++){ rts[i][k]=rts[i][k-1]*w; rrts[i][k]=rrts[i][k-1]*rw; } } } void ntt(vector<M> &as,bool f){ int n=as.size(); assert((n&(n-1))==0); ensure_base(n); for(int i=0,j=1;j+1<n;j++){ for(int k=n>>1;k>(i^=k);k>>=1); if(i>j) swap(as[i],as[j]); } for(int i=1;i<n;i<<=1){ for(int j=0;j<n;j+=i*2){ for(int k=0;k<i;k++){ M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]); as[i+j+k]=as[j+k]-z; as[j+k]+=z; } } } if(f){ M tmp=M(n).inv(); for(int i=0;i<n;i++) as[i]*=tmp; } } vector<M> multiply(vector<M> as,vector<M> bs){ int need=as.size()+bs.size()-1; int sz=1; while(sz<need) sz<<=1; as.resize(sz,M(0)); bs.resize(sz,M(0)); ntt(as,0);ntt(bs,0); for(int i=0;i<sz;i++) as[i]*=bs[i]; ntt(as,1); as.resize(need); return as; } vector<int> multiply(vector<int> as,vector<int> bs){ vector<M> am(as.size()),bm(bs.size()); for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]); for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]); vector<M> cm=multiply(am,bm); vector<int> cs(cm.size()); for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v; return cs; } }; template<int X> constexpr int NTT<X>::md; template<int X> constexpr int NTT<X>::rt; template<typename M_> struct FormalPowerSeries : Enumeration<M_> { using M = M_; using super = Enumeration<M>; using super::fact; using super::finv; using super::invs; using Poly = vector<M>; using Conv = function<Poly(Poly, Poly)>; Conv conv; FormalPowerSeries(Conv conv):conv(conv){} Poly pre(const Poly &as,int deg){ return Poly(as.begin(),as.begin()+min((int)as.size(),deg)); } Poly add(Poly as,Poly bs){ int sz=max(as.size(),bs.size()); Poly cs(sz,M(0)); for(int i=0;i<(int)as.size();i++) cs[i]+=as[i]; for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i]; return cs; } Poly sub(Poly as,Poly bs){ int sz=max(as.size(),bs.size()); Poly cs(sz,M(0)); for(int i=0;i<(int)as.size();i++) cs[i]+=as[i]; for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i]; return cs; } Poly mul(Poly as,Poly bs){ return conv(as,bs); } Poly mul(Poly as,M k){ for(auto &a:as) a*=k; return as; } // F(0) must not be 0 Poly inv(Poly as,int deg){ assert(as[0]!=M(0)); Poly rs({M(1)/as[0]}); for(int i=1;i<deg;i<<=1) rs=pre(sub(add(rs,rs),mul(mul(rs,rs),pre(as,i<<1))),i<<1); return rs; } // not zero Poly div(Poly as,Poly bs){ while(as.back()==M(0)) as.pop_back(); while(bs.back()==M(0)) bs.pop_back(); if(bs.size()>as.size()) return Poly(); reverse(as.begin(),as.end()); reverse(bs.begin(),bs.end()); int need=as.size()-bs.size()+1; Poly ds=pre(mul(as,inv(bs,need)),need); reverse(ds.begin(),ds.end()); return ds; } Poly mod(Poly as,Poly bs){ if(as==Poly(as.size(),0)) return Poly({0}); as=sub(as,mul(div(as,bs),bs)); if(as==Poly(as.size(),0)) return Poly({0}); while(as.back()==M(0)) as.pop_back(); return as; } // F(0) must be 1 Poly sqrt(Poly as,int deg){ assert(as[0]==M(1)); M inv2=M(1)/M(2); Poly ss({M(1)}); for(int i=1;i<deg;i<<=1){ ss=pre(add(ss,mul(pre(as,i<<1),inv(ss,i<<1))),i<<1); for(M &x:ss) x*=inv2; } return ss; } Poly diff(Poly as){ int n=as.size(); Poly rs(n-1); for(int i=1;i<n;i++) rs[i-1]=as[i]*M(i); return rs; } Poly integral(Poly as){ super::init(as.size()+1); int n=as.size(); Poly rs(n+1); rs[0]=M(0); for(int i=0;i<n;i++) rs[i+1]=as[i]*invs[i+1]; return rs; } // F(0) must be 1 Poly log(Poly as,int deg){ return pre(integral(mul(diff(as),inv(as,deg))),deg); } // F(0) must be 0 Poly exp(Poly as,int deg){ Poly fs({M(1)}); as[0]+=M(1); for(int i=1;i<deg;i<<=1) fs=pre(mul(fs,sub(pre(as,i<<1),log(fs,i<<1))),i<<1); return fs; } // not zero Poly pow(Poly as,long long k,int deg){ if(as==Poly(as.size(),M(0))) return Poly(deg,M(0)); int cnt=0; while(as[cnt]==M(0)) cnt++; if(cnt*k>=deg) return Poly(deg,M(0)); as.erase(as.begin(),as.begin()+cnt); deg-=cnt*k; M c=as[0]; Poly zs(cnt*k,M(0)); Poly rs=mul(exp(mul(log(mul(as,c.inv()),deg),M(k)),deg),c.pow(k)); zs.insert(zs.end(),rs.begin(),rs.end()); return pre(zs,deg+cnt*k); } // x -> x + c Poly shift(Poly as,M c){ super::init(as.size()+1); int n=as.size(); for(int i=0;i<n;i++) as[i]*=fact[i]; reverse(as.begin(),as.end()); Poly bs(n,M(1)); for(int i=1;i<n;i++) bs[i]=bs[i-1]*c*invs[i]; as=pre(mul(as,bs),n); reverse(as.begin(),as.end()); for(int i=0;i<n;i++) as[i]*=finv[i]; return as; } }; //INSERT ABOVE HERE signed main(){ cin.tie(0); ios::sync_with_stdio(0); int n,m; cin>>n>>m; vector<int> as(n); for(int i=0;i<n;i++) cin>>as[i]; NTT<2> ntt; using M = decltype(ntt)::M; using Poly = vector<M>; using P = pair<Poly, Poly>; auto conv=[&](auto as,auto bs){return ntt.multiply(as,bs);}; FormalPowerSeries<M> FPS(conv); queue<P> que; for(int a:as) que.emplace(Poly({M(1)}),Poly({M(1),-M(a)})); while(que.size()>1){ auto x=que.front();que.pop(); auto y=que.front();que.pop(); Poly num=FPS.add(FPS.mul(x.first,y.second),FPS.mul(y.first,x.second)); Poly den=FPS.mul(x.second,y.second); que.emplace(num,den); } auto p=que.front(); Poly rs=FPS.mul(p.first,FPS.inv(p.second,m)); for(int i=1;i<=m;i++){ if(i!=1) cout<<' '; cout<<rs[i]; } cout<<newl; return 0; }