結果
| 問題 |
No.1140 EXPotentiaLLL!
|
| ユーザー |
|
| 提出日時 | 2020-08-01 00:09:50 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 246 ms / 2,000 ms |
| コード長 | 13,887 bytes |
| コンパイル時間 | 3,385 ms |
| コンパイル使用メモリ | 310,332 KB |
| 最終ジャッジ日時 | 2025-01-12 12:01:23 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 12 |
ソースコード
#pragma region kyopro_template
#define Nyaan_template
#include <immintrin.h>
#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define each(x, v) for (auto &x : v)
#define all(v) (v).begin(), (v).end()
#define sz(v) ((int)(v).size())
#define mem(a, val) memset(a, val, sizeof(a))
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define inc(...) \
char __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define die(...) \
do { \
out(__VA_ARGS__); \
return; \
} while (0)
using namespace std;
using ll = long long;
template <class T>
using V = vector<T>;
using vi = vector<int>;
using vl = vector<long long>;
using vvi = vector<vector<int>>;
using vd = V<double>;
using vs = V<string>;
using vvl = vector<vector<long long>>;
using P = pair<long long, long long>;
using vp = vector<P>;
using pii = pair<int, int>;
using vpi = vector<pair<int, int>>;
constexpr int inf = 1001001001;
constexpr long long infLL = (1LL << 61) - 1;
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U>
void out(const T &t, const U &... u) {
cout << t;
if (sizeof...(u)) cout << " ";
out(u...);
}
#ifdef NyaanDebug
#define trc(...) \
do { \
cerr << #__VA_ARGS__ << " = "; \
dbg_out(__VA_ARGS__); \
} while (0)
#define trca(v, N) \
do { \
cerr << #v << " = "; \
array_out(v, N); \
} while (0)
#define trcc(v) \
do { \
cerr << #v << " = {"; \
each(x, v) { cerr << " " << x << ","; } \
cerr << "}" << endl; \
} while (0)
template <typename T>
void _cout(const T &c) {
cerr << c;
}
void _cout(const int &c) {
if (c == 1001001001)
cerr << "inf";
else if (c == -1001001001)
cerr << "-inf";
else
cerr << c;
}
void _cout(const unsigned int &c) {
if (c == 1001001001)
cerr << "inf";
else
cerr << c;
}
void _cout(const long long &c) {
if (c == 1001001001 || c == (1LL << 61) - 1)
cerr << "inf";
else if (c == -1001001001 || c == -((1LL << 61) - 1))
cerr << "-inf";
else
cerr << c;
}
void _cout(const unsigned long long &c) {
if (c == 1001001001 || c == (1LL << 61) - 1)
cerr << "inf";
else
cerr << c;
}
template <typename T, typename U>
void _cout(const pair<T, U> &p) {
cerr << "{ ";
_cout(p.fi);
cerr << ", ";
_cout(p.se);
cerr << " } ";
}
template <typename T>
void _cout(const vector<T> &v) {
int s = v.size();
cerr << "{ ";
for (int i = 0; i < s; i++) {
cerr << (i ? ", " : "");
_cout(v[i]);
}
cerr << " } ";
}
template <typename T>
void _cout(const vector<vector<T>> &v) {
cerr << "[ ";
for (const auto &x : v) {
cerr << endl;
_cout(x);
cerr << ", ";
}
cerr << endl << " ] ";
}
void dbg_out() { cerr << endl; }
template <typename T, class... U>
void dbg_out(const T &t, const U &... u) {
_cout(t);
if (sizeof...(u)) cerr << ", ";
dbg_out(u...);
}
template <typename T>
void array_out(const T &v, int s) {
cerr << "{ ";
for (int i = 0; i < s; i++) {
cerr << (i ? ", " : "");
_cout(v[i]);
}
cerr << " } " << endl;
}
template <typename T>
void array_out(const T &v, int H, int W) {
cerr << "[ ";
for (int i = 0; i < H; i++) {
cerr << (i ? ", " : "");
array_out(v[i], W);
}
cerr << " ] " << endl;
}
#else
#define trc(...)
#define trca(...)
#define trcc(...)
#endif
inline int popcnt(unsigned long long a) { return __builtin_popcountll(a); }
inline int lsb(unsigned long long a) { return __builtin_ctzll(a); }
inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); }
template <typename T>
inline int getbit(T a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void setbit(T &a, int i) {
a |= (1LL << i);
}
template <typename T>
inline void delbit(T &a, int i) {
a &= ~(1LL << i);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int btw(T a, T x, T b) {
return a <= x && x < b;
}
template <typename T, typename U>
T ceil(T a, U b) {
return (a + b - 1) / b;
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
while (n) {
if (n & 1) ret *= x;
x *= x;
n >>= 1;
}
return ret;
}
template <typename T>
vector<T> mkrui(const vector<T> &v) {
vector<T> ret(v.size() + 1);
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T = int>
vector<T> mkiota(int N) {
vector<T> ret(N);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
vector<int> inv(v.size());
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
void solve();
int main() { solve(); }
#pragma endregionusing namespace std;
struct ArbitraryModInt {
int x;
ArbitraryModInt() : x(0) {}
ArbitraryModInt(int64_t y)
: x(y >= 0 ? y % get_mod() : (get_mod() - (-y) % get_mod()) % get_mod()) {
}
ArbitraryModInt &operator+=(const ArbitraryModInt &p) {
if ((x += p.x) >= get_mod()) x -= get_mod();
return *this;
}
ArbitraryModInt &operator-=(const ArbitraryModInt &p) {
if ((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
return *this;
}
ArbitraryModInt &operator*=(const ArbitraryModInt &p) {
unsigned long long a = (unsigned long long)x * p.x;
unsigned xh = (unsigned)(a >> 32), xl = (unsigned)a, d, m;
asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(get_mod()));
x = m;
return *this;
}
ArbitraryModInt &operator/=(const ArbitraryModInt &p) {
*this *= p.inverse();
return *this;
}
ArbitraryModInt operator-() const { return ArbitraryModInt(-x); }
ArbitraryModInt operator+(const ArbitraryModInt &p) const {
return ArbitraryModInt(*this) += p;
}
ArbitraryModInt operator-(const ArbitraryModInt &p) const {
return ArbitraryModInt(*this) -= p;
}
ArbitraryModInt operator*(const ArbitraryModInt &p) const {
return ArbitraryModInt(*this) *= p;
}
ArbitraryModInt operator/(const ArbitraryModInt &p) const {
return ArbitraryModInt(*this) /= p;
}
bool operator==(const ArbitraryModInt &p) const { return x == p.x; }
bool operator!=(const ArbitraryModInt &p) const { return x != p.x; }
ArbitraryModInt inverse() const {
int a = x, b = get_mod(), u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ArbitraryModInt(u);
}
ArbitraryModInt pow(int64_t n) const {
ArbitraryModInt ret(1), mul(x);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ArbitraryModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ArbitraryModInt &a) {
int64_t t;
is >> t;
a = ArbitraryModInt(t);
return (is);
}
int get() const { return x; }
static int &get_mod() {
static int mod = 0;
return mod;
}
static void set_mod(int md) { get_mod() = md; }
};using namespace std;
long long my_gcd(long long x, long long y) {
long long z;
if (x > y) swap(x, y);
while (x) {
x = y % (z = x);
y = z;
}
return y;
}
long long my_lcm(long long x, long long y) {
return 1LL * x / my_gcd(x, y) * y;
}
#define gcd my_gcd
#define lcm my_lcm
// Prime -> 1 {0, 0, 1, 1, 0, 1, 0, 1, ...}
vector<int> Primes(int N) {
vector<int> A(N + 1, 1);
A[0] = A[1] = 0;
for (int i = 2; i * i <= N; i++)
if (A[i] == 1)
for (int j = i << 1; j <= N; j += i) A[j] = 0;
return A;
}
// Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...}
vector<long long> PrimeSieve(int N) {
vector<int> prime = Primes(N);
vector<long long> ret;
for (int i = 0; i < (int)prime.size(); i++)
if (prime[i] == 1) ret.push_back(i);
return ret;
}
// Factors (using for fast factorization)
// {0, 0, 1, 1, 2, 1, 2, 1, 2, 3, ...}
vector<int> Factors(int N) {
vector<int> A(N + 1, 1);
A[0] = A[1] = 0;
for (int i = 2; i * i <= N; i++)
if (A[i] == 1)
for (int j = i << 1; j <= N; j += i) A[j] = i;
return A;
}
// totient function φ(N)=(1 ~ N , gcd(i,N) = 1)
// {0, 1, 1, 2, 4, 2, 6, 4, ... }
vector<int> EulersTotientFunction(int N) {
vector<int> ret(N + 1, 0);
for (int i = 0; i <= N; i++) ret[i] = i;
for (int i = 2; i <= N; i++) {
if (ret[i] == i)
for (int j = i; j <= N; j += i) ret[j] = ret[j] / i * (i - 1);
}
return ret;
}
// Divisor ex) 12 -> {1, 2, 3, 4, 6, 12}
vector<long long> Divisor(long long N) {
vector<long long> v;
for (long long i = 1; i * i <= N; i++) {
if (N % i == 0) {
v.push_back(i);
if (i * i != N) v.push_back(N / i);
}
}
return v;
}
// Factorization
// ex) 18 -> { (2,1) , (3,2) }
vector<pair<long long, int> > PrimeFactors(long long N) {
vector<pair<long long, int> > ret;
for (long long p = 2; p * p <= N; p++)
if (N % p == 0) {
ret.emplace_back(p, 0);
while (N % p == 0) N /= p, ret.back().second++;
}
if (N >= 2) ret.emplace_back(N, 1);
return ret;
}
// Factorization with Prime Sieve
// ex) 18 -> { (2,1) , (3,2) }
vector<pair<long long, int> > PrimeFactors(long long N,
const vector<long long> &prime) {
vector<pair<long long, int> > ret;
for (auto &p : prime) {
if (p * p > N) break;
if (N % p == 0) {
ret.emplace_back(p, 0);
while (N % p == 0) N /= p, ret.back().second++;
}
}
if (N >= 2) ret.emplace_back(N, 1);
return ret;
}
// modpow for mod < 2 ^ 31
long long modpow(long long a, long long n, long long mod) {
a %= mod;
long long ret = 1;
while (n > 0) {
if (n & 1) ret = ret * a % mod;
a = a * a % mod;
n >>= 1;
}
return ret % mod;
};
// Check if r is Primitive Root
bool isPrimitiveRoot(long long r, long long mod) {
r %= mod;
if (r == 0) return false;
auto pf = PrimeFactors(mod - 1);
for (auto &x : pf) {
if (modpow(r, (mod - 1) / x.first, mod) == 1) return false;
}
return true;
}
// Get Primitive Root
long long PrimitiveRoot(long long mod) {
long long ret = 1;
while (isPrimitiveRoot(ret, mod) == false) ret++;
return ret;
}
// Euler's phi function
long long phi(long long n) {
auto pf = PrimeFactors(n);
long long ret = n;
for (auto p : pf) {
ret /= p.first;
ret *= (p.first - 1);
}
return ret;
}
// Extended Euclidean algorithm
// solve : ax + by = gcd(a, b)
// return : pair(x, y)
pair<long long, long long> extgcd(long long a, long long b) {
if (b == 0) return make_pair(1, 0);
long long x, y;
tie(y, x) = extgcd(b, a % b);
y -= a / b * x;
return make_pair(x, y);
}
// Check if n is Square Number
bool isSquare(long long n) {
if (n == 0 || n == 1) return true;
long long d = (long long)sqrt(n) - 1;
while (d * d < n) ++d;
return d * d == n;
}
// return a number of n's digit
// zero ... return value if n = 0 (default -> 1)
int isDigit(long long n, int zero = 1) {
if (n == 0) return zero;
int ret = 0;
while (n) {
n /= 10;
ret++;
}
return ret;
}//Binomial<mint> C(2002002);
void solve() {
auto sieve = Primes(5050505);
using mint = ArbitraryModInt;
ini(T);
rep(_,T){
inl(a,p);
if(!sieve[p])out(-1);
else{
mint::set_mod(p);
out((a % p != 0));
}
}
}