結果
問題 | No.1145 Sums of Powers |
ユーザー | 37zigen |
提出日時 | 2020-08-01 16:23:38 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 754 ms / 2,000 ms |
コード長 | 10,426 bytes |
コンパイル時間 | 2,416 ms |
コンパイル使用メモリ | 135,720 KB |
実行使用メモリ | 28,336 KB |
最終ジャッジ日時 | 2024-07-08 02:48:54 |
合計ジャッジ時間 | 5,015 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
7,356 KB |
testcase_01 | AC | 4 ms
7,400 KB |
testcase_02 | AC | 7 ms
7,720 KB |
testcase_03 | AC | 750 ms
28,336 KB |
testcase_04 | AC | 745 ms
28,276 KB |
testcase_05 | AC | 754 ms
28,332 KB |
ソースコード
#include <string> #include <iostream> #include <vector> #include <cassert> #include <random> #include <algorithm> #include <deque> #include <cstring> #include <time.h> #include <cstdio> #include <tuple> constexpr long long p=998244353; constexpr long long root=3; constexpr long long iroot=332748118; inline int ADD(const int a,const int b) { return a+b>=p?a+b-p:a+b; } inline int SUB(const int a,const int b) { return a-b<0?a-b+p:a-b; } void fail() { printf("-1\n"); exit(0); } int deg(const std::vector<int> &a){ int ret=a.size()-1; while (ret>=0 && a[ret]==0) --ret; return ret; } std::vector<int> trim(std::vector<int> a,const int n) { int asize=a.size(); a.resize(n); for (int i=asize;i<n;++i) a[i]=0; return a; } void norm(std::vector<int> &a) { while (a.size()>1 && a.back()==0) a.pop_back(); } //f->fx^(shift) std::vector<int> shift(std::vector<int> &a,const int shift) { std::vector<int> b(std::max(0,(int)a.size()+shift),0); for (int i=0;i<(int)b.size();++i) b[i]=(0<=i-shift&&i-shift<(int)a.size())?a[i-shift]:0; return b; } inline long long pow_mod(long long a,long long n) { long long ret=1; for (;n>0;n>>=1,a=a*a%p) if(n%2==1) ret=ret*a%p; return ret; } inline int inv(int a) { a%=p; if (a<0) a+=p; int u=p; int v=a; int s=0; int t=1; // sa=u // ta=v while (v!=0) { int q=u/v; s-=q*t;u-=q*v; std::swap(s,t); std::swap(u,v); } return s>=0?s:s+p; } void monic(std::vector<int> &a) { norm(a); long long coe=inv(a.back()); for (int i=0;i<(int)a.size();++i) { a[i]=(int)(coe*a[i]%p); } } std::vector<int> add(std::vector<int> a,std::vector<int> b) { int n=std::max(a.size(),b.size()); a.resize(n);b.resize(n); for (int i=0;i<n;++i) a[i]=ADD(a[i],b[i]); return a; } std::vector<int> subtract(std::vector<int> a,std::vector<int> b) { int n=std::max(a.size(),b.size()); a.resize(n);b.resize(n); for (int i=0;i<n;++i) a[i]=ADD(a[i],p-b[i]); return a; } std::vector<int> mul_naive(std::vector<int> &a,std::vector<int> &b) { std::vector<int> ret(a.size()+b.size()-1,0); if (a.size()<b.size()) { for (int i=0;i<(int)a.size();++i) { for (int j=0;j<(int)b.size();++j) { ret[i+j]=(int)((ret[i+j]+1LL*a[i]*b[j])%p); } } }else { for (int j=0;j<(int)b.size();++j) { for (int i=0;i<(int)a.size();++i) { ret[i+j]=(int)((ret[i+j]+1LL*a[i]*b[j])%p); } } } norm(ret); return ret; } void fft_(int n,int g,int stride,std::vector<int> &from,std::vector<int> &to,bool flag){ if (n==1) { if (flag) for (int i=0;i<stride;++i) to[i]=from[i]; return; } else { int w=pow_mod(g,(p-1)/n); int mul=1; for (int i=0;i<n/2;++i) { for (int src=0;src<stride;++src) { int A=from[src+stride*(i+ 0)]; int B=from[src+stride*(i+n/2)]; to[src+stride*(2*i+0)]=ADD(A,B); to[src+stride*(2*i+1)]=1LL*SUB(A,B)*mul%p; } mul=1LL*mul*w%p; } fft_(n/2,g,2*stride,to,from,!flag); } } void fft4_(int n,int g,int j,int stride,std::vector<int> &from,std::vector<int> &to,bool flag){ int w=pow_mod(g,(p-1)/n); long long w1,w2,w3; int i,src,n0,n1,n2,n3,A,B,C,D,apc,amc,bpd,jbmd; while (n>2) { n0=0; n1=n/4; n2=n1+n1; n3=n1+n2; w1=1; for (i=0;i<n1;++i) { w2=w1*w1%p; w3=w1*w2%p; for (src=0;src<stride;++src) { A=from[src+stride*(i+n0)]; B=from[src+stride*(i+n1)]; C=from[src+stride*(i+n2)]; D=from[src+stride*(i+n3)]; apc=ADD(A,C); amc=SUB(A,C); bpd=ADD(B,D); jbmd=1LL*j*SUB(B,D)%p; to[src+stride*(4*i+0)]=ADD(apc,bpd); to[src+stride*(4*i+1)]=w1*(amc+p-jbmd)%p; to[src+stride*(4*i+2)]=w2*(A+C+p-bpd)%p; to[src+stride*(4*i+3)]=w3*(A+p-C+jbmd)%p; } w1=1LL*w1*w%p; } n/=4; stride*=4; flag=!flag; w=1LL*w*w%p; w=1LL*w*w%p; std::swap(to,from); } if (n<=2) fft_(n,g,stride,from,to,flag); if (from.size()>to.size()) std::swap(from,to); } std::vector<int> tmp_fft(1<<20); void fft(std::vector<int> &a,int g) { fft4_(a.size(),g,pow_mod(g,(p-1)/4*3),1,a,tmp_fft,false); } // (sx^p+u)(tx^p+v) // =stx^(2p)+(sv+ut)x^p+uv // =stx^(2p)+((s+u)(t+v)-(st-uv))x^p+uv void mul_karatsuba(int a[],int b[],int c[],int res[],int n) { if (n<=8) { for (int i=0;i<2*n;++i) res[i]=0; for (int i=0;i<n;++i) for(int j=0;j<n;++j) res[i+j]=ADD(res[i+j],(int)(1LL*a[i]*b[j]%p)); return; } int *x0=res; int *x1=res+n; int *x2=res+n*2; int *a0=a; int *a1=a+n/2; int *b0=b; int *b1=b+n/2; int *c0=c; int *c1=c+n/2; mul_karatsuba(a0,b0,c+n*2,x0,n/2); mul_karatsuba(a1,b1,c+n*2,x1,n/2); for (int i=0;i<n/2;++i) { c0[i]=ADD(a0[i],a1[i]); c1[i]=ADD(b0[i],b1[i]); } mul_karatsuba(c0,c1,c+n*2,x2,n/2); for (int i=0;i<n;++i) { x2[i]=SUB(SUB(x2[i],x0[i]),x1[i]); } for (int i=0;i<n;++i) { res[i+n/2]=ADD(res[i+n/2],x2[i]); } } std::vector<int> mul_fft(std::vector<int> a,std::vector<int> b) { int n=1; int need=a.size()+b.size()-1; while (n<need) n*=2; a.resize(n); b.resize(n); fft(a,root); fft(b,root); int inv_n=inv(n); for (int i=0;i<n;++i) a[i]=(int)(1LL*a[i]*b[i]%p*inv_n%p); fft(a,iroot); a.resize(need); return a; } std::vector<int> karatsuba(std::vector<int> &a,std::vector<int> &b) { int need=std::max(a.size(),b.size()); int n=1; while (n<need) n*=2; std::vector<int> a_=trim(a,n); std::vector<int> b_=trim(b,n); std::vector<int> c(4*n); std::vector<int> res(4*n); mul_karatsuba(a_.data(),b_.data(),c.data(),res.data(),n); res.resize(a.size()+b.size()-1); return res; } std::vector<int> mul(std::vector<int> &a,std::vector<int> &b) { if (std::min(a.size(),b.size())<=2) { return mul_naive(a,b); }else if (std::max(a.size(),b.size())<=64) { return karatsuba(a,b); } else { std::vector<int> ret=mul_fft(a,b); norm(ret); return ret; } } std::vector<int> mul(std::vector<int> &a,int b) { int n=a.size(); std::vector<int> c(n); for (int i=0;i<n;++i) c[i]=(int)(1LL*a[i]*(p+b)%p); return c; } std::vector<std::vector<std::vector<int>>> mul(std::vector<std::vector<std::vector<int>>> &a,std::vector<std::vector<std::vector<int>>> &b) { std::vector<std::vector<std::vector<int>>> ret(a.size(),std::vector<std::vector<int>>(b[0].size(),std::vector<int>())); for (int i=0;i<(int)a.size();++i) { for (int j=0;j<(int)b[i].size();++j) { for (int k=0;k<(int)a[i].size();++k) { std::vector<int> prd=mul(a[i][k],b[k][j]); if (ret[i][j].size()<prd.size()) ret[i][j].resize(prd.size()); for (int l=0;l<(int)prd.size();++l) { ret[i][j][l]=ADD(ret[i][j][l],prd[l]); } } } } return ret; } // f <- -f(fg-1)+f std::vector<int> inv(std::vector<int> &g) { int n=g.size(); std::vector<int> f={inv(g[0])}; long long root=3; long long iroot=inv(3); for (int len=1;len<n;len*=2) { std::vector<int> f_fft=trim(f,2*len); std::vector<int> g_fft=trim(g,2*len); fft(f_fft,root); fft(g_fft,root); long long isize=inv(2*len); for (int i=0;i<2*len;++i) g_fft[i]=(int)(1LL*g_fft[i]*f_fft[i]%p*isize%p); fft(g_fft,iroot); for (int i=0;i<len;++i) g_fft[i]=0; fft(g_fft,root); for (int i=0;i<2*len;++i) g_fft[i]=(int)(1LL*g_fft[i]*f_fft[i]%p*isize%p); fft(g_fft,iroot); for (int i=0;i<len;++i) g_fft[i]=0; f.resize(std::min(n,2*len)); for (int i=0;i<2*len;++i) { f[i]=ADD(f[i],p-g_fft[i]); } } return f; } std::vector<int> divide_naive(std::vector<int> a,std::vector<int> &b) { if (a.size()<b.size()) return {0}; int n=a.size()-b.size()+1; std::vector<int> ret(n,0); norm(b); assert(deg(b)>=0); int ib=inv(b.back()); for (int i=n-1;i>=0;--i) { if (a[i+b.size()-1]==0) continue; ret[i]=1LL*ib*a[i+b.size()-1]%p; for (int j=0;j<(int)b.size();++j) { a[i+j]=(a[i+j]+1LL*b[j]*(p-ret[i]))%p; } } return ret; } std::vector<int> divide_newton(std::vector<int> a,std::vector<int> b) { if (a.size()<b.size()) return {0}; std::reverse(a.begin(),a.end()); std::reverse(b.begin(),b.end()); int n=a.size()-b.size()+1; a.resize(n); b.resize(n); b=inv(b); a=mul(a,b); a.resize(n); std::reverse(a.begin(),a.end()); return a; } std::vector<int> divide(std::vector<int> &a,std::vector<int> &b) { norm(a); norm(b); if (a.size()<b.size()) { std::vector<int> ret(1,0); return ret; } if (a.size()==b.size()) { return {(int)(1LL*inv(b.back())*a.back()%p)}; } else if (a.size()-b.size()<b.size()-1 && a.size()>=32) { int del=a.size()-2*(a.size()-b.size())-1; std::vector<int> na=shift(a,-del); std::vector<int> nb=shift(b,-del); return divide(na,nb); } else if (a.size()<32) { return divide_naive(a,b); } else { return divide_newton(a,b); } } std::vector<int> mod(std::vector<int> &a,std::vector<int> &b) { std::vector<int> q=divide(a,b); q=subtract(a,mul(b,q)); norm(q); return q; } int main() { int n,m; std::cin>>n>>m; std::vector<int> a(n); for (int i=0;i<n;++i) std::cin>>a[i]; std::deque<std::vector<int>> den; std::deque<std::vector<std::vector<int>>> num; for (int i=0;i<n;++i) { std::vector<int> f{1,(int)(p-a[i])}; den.push_back(f); } for (int i=0;i<n;++i) { std::vector<int> f{1,(int)(p-a[i])}; std::vector<int> g{1}; std::vector<std::vector<int>> h{f,g}; num.push_back(h); } while (den.size()>1) { std::vector<int> f=den.front();den.pop_front(); std::vector<int> g=den.front();den.pop_front(); den.push_back(mul(f,g)); } while (num.size()>1) { std::vector<std::vector<int>> f=num.front();num.pop_front(); std::vector<std::vector<int>> g=num.front();num.pop_front(); std::vector<int> a=mul(f[0],g[0]); std::vector<int> b=add(mul(f[0],g[1]),mul(f[1],g[0])); std::vector<std::vector<int>> ret{a,b}; num.push_back(ret); } std::vector<int> denominator=den.front(); denominator.resize(m+1); denominator=inv(denominator); std::vector<int> ans=mul(num.front()[1],denominator); for (int i=1;i<=m;++i) { std::cout<<ans[i]; if (i!=m) { std::cout<<" "; } else { std::cout<<"\n"; } } }