結果

問題 No.1030 だんしんぐぱーりない
ユーザー KoDKoD
提出日時 2020-08-03 12:20:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 435 ms / 2,000 ms
コード長 13,458 bytes
コンパイル時間 1,595 ms
コンパイル使用メモリ 102,888 KB
実行使用メモリ 20,180 KB
最終ジャッジ日時 2023-09-29 13:22:28
合計ジャッジ時間 16,177 ms
ジャッジサーバーID
(参考情報)
judge15 / judge12
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
4,376 KB
testcase_01 AC 1 ms
4,376 KB
testcase_02 AC 2 ms
4,376 KB
testcase_03 AC 1 ms
4,376 KB
testcase_04 AC 1 ms
4,376 KB
testcase_05 AC 319 ms
17,484 KB
testcase_06 AC 250 ms
14,096 KB
testcase_07 AC 163 ms
8,008 KB
testcase_08 AC 165 ms
9,300 KB
testcase_09 AC 275 ms
17,832 KB
testcase_10 AC 109 ms
5,400 KB
testcase_11 AC 256 ms
10,916 KB
testcase_12 AC 283 ms
15,700 KB
testcase_13 AC 223 ms
14,324 KB
testcase_14 AC 300 ms
14,360 KB
testcase_15 AC 139 ms
4,944 KB
testcase_16 AC 266 ms
12,528 KB
testcase_17 AC 278 ms
18,008 KB
testcase_18 AC 331 ms
14,924 KB
testcase_19 AC 178 ms
7,000 KB
testcase_20 AC 212 ms
10,672 KB
testcase_21 AC 218 ms
13,828 KB
testcase_22 AC 215 ms
11,204 KB
testcase_23 AC 257 ms
10,140 KB
testcase_24 AC 191 ms
6,392 KB
testcase_25 AC 220 ms
10,244 KB
testcase_26 AC 149 ms
4,376 KB
testcase_27 AC 171 ms
4,556 KB
testcase_28 AC 289 ms
13,004 KB
testcase_29 AC 217 ms
15,560 KB
testcase_30 AC 195 ms
11,440 KB
testcase_31 AC 203 ms
10,640 KB
testcase_32 AC 259 ms
14,400 KB
testcase_33 AC 278 ms
16,432 KB
testcase_34 AC 112 ms
5,864 KB
testcase_35 AC 425 ms
20,112 KB
testcase_36 AC 416 ms
20,180 KB
testcase_37 AC 435 ms
20,064 KB
testcase_38 AC 434 ms
20,132 KB
testcase_39 AC 429 ms
20,120 KB
testcase_40 AC 1 ms
4,380 KB
testcase_41 AC 2 ms
4,380 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"

/**
 * @title Template
 */

#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>

#line 2 "/Users/kodamankod/Desktop/Programming/Library/other/chmin_chmax.cpp"

template <class T, class U>
constexpr bool chmin(T &lhs, const U &rhs) {
  if (lhs > rhs) { 
    lhs = rhs; 
    return true; 
  }
  return false;
}

template <class T, class U>
constexpr bool chmax(T &lhs, const U &rhs) {
  if (lhs < rhs) { 
    lhs = rhs; 
    return true; 
  }
  return false;
}

/**
 * @title Chmin/Chmax
 */
#line 2 "/Users/kodamankod/Desktop/Programming/Library/other/range.cpp"

#line 4 "/Users/kodamankod/Desktop/Programming/Library/other/range.cpp"

class range {
public:
  class iterator {
  private:
    int64_t M_position;

  public:
    constexpr iterator(int64_t position) noexcept: M_position(position) { }
    constexpr void operator ++ () noexcept { ++M_position; }
    constexpr bool operator != (iterator other) const noexcept { return M_position != other.M_position; }
    constexpr int64_t operator * () const noexcept { return M_position; }

  };

  class reverse_iterator {
  private:
    int64_t M_position;
  
  public:
    constexpr reverse_iterator(int64_t position) noexcept: M_position(position) { }
    constexpr void operator ++ () noexcept { --M_position; }
    constexpr bool operator != (reverse_iterator other) const noexcept { return M_position != other.M_position; }
    constexpr int64_t operator * () const noexcept { return M_position; }

  };
  
private:
  const iterator M_first, M_last;

public:
  constexpr range(int64_t first, int64_t last) noexcept: M_first(first), M_last(std::max(first, last)) { }
  constexpr iterator begin() const noexcept { return M_first; }
  constexpr iterator end() const noexcept { return M_last; }
  constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator(*M_last - 1); } 
  constexpr reverse_iterator rend() const noexcept { return reverse_iterator(*M_first - 1); } 

};

/**
 * @title Range
 */
#line 2 "/Users/kodamankod/Desktop/Programming/Library/other/rev.cpp"

#include <type_traits>
#include <iterator>
#line 6 "/Users/kodamankod/Desktop/Programming/Library/other/rev.cpp"

template <class T>
class rev_impl {
public:
  using iterator = typename std::decay<T>::type::reverse_iterator;

private:
  const iterator M_begin;
  const iterator M_end;

public:
  constexpr rev_impl(T &&cont) noexcept: M_begin(std::rbegin(cont)), M_end(std::rend(cont)) { }
  constexpr iterator begin() const noexcept { return M_begin; }
  constexpr iterator end() const noexcept { return M_end; }

};

template <class T>
constexpr decltype(auto) rev(T &&cont) {
  return rev_impl<T>(std::forward<T>(cont));
}

/**
 * @title Reverser
 */
#line 2 "/Users/kodamankod/Desktop/Programming/Library/other/fix_point.cpp"

#line 4 "/Users/kodamankod/Desktop/Programming/Library/other/fix_point.cpp"

template <class Func>
struct fix_point_impl: private Func {
  explicit constexpr fix_point_impl(Func &&func): Func(std::forward<Func>(func)) { }
  template <class... Args>
  constexpr decltype(auto) operator () (Args &&... args) const {
    return Func::operator()(*this, std::forward<Args>(args)...);
  }
};

template <class Func>
constexpr decltype(auto) fix_point(Func &&func) {
  return fix_point_impl<Func>(std::forward<Func>(func));
}

/**
 * @title Lambda Recursion
 */
#line 2 "/Users/kodamankod/Desktop/Programming/Library/graph/heavy_light_decomposition.cpp"

#include <cstddef>
#line 6 "/Users/kodamankod/Desktop/Programming/Library/graph/heavy_light_decomposition.cpp"

class heavy_light_decomposition {
public:
  using size_type = size_t;

private:
  std::vector<std::vector<size_type>> M_graph;
  std::vector<size_type> M_size, M_parent, M_head;
  size_type M_index;

  void M_calc_subtree(size_type u, size_type p) {
    M_size[u] = 1;
    for (auto v: M_graph[u]) {
      if (v != p) {
        M_calc_subtree(v, u);
        M_size[u] += M_size[v];
      }
    }
  }

  void M_decompose(size_type u, size_type p, size_type h) {
    label[u] = M_index;
    M_head[u] = h;
    M_parent[u] = p;
    ++M_index;
    size_type max = 0, heavy = -1;
    for (auto v: M_graph[u]) {
      if (v != p) {
        if (max < M_size[v]) {
          max = M_size[v];
          heavy = v;
        }
      }
    }
    if (heavy == size_type(-1)) return;
    M_decompose(heavy, u, h);
    for (auto v: M_graph[u]) {
      if (v != p && v != heavy) {
        M_decompose(v, u, v);
      }
    }
  }

public:
  std::vector<size_type> label;

  heavy_light_decomposition() { }
  explicit heavy_light_decomposition(size_type size) { initialize(size); }

  void initialize(size_type size) {
    clear();
    M_index = 0;
    M_graph.assign(size, { });
    M_size.assign(size, 0);
    M_parent.assign(size, 0);
    M_head.assign(size, 0);
    label.assign(size, 0);
  }
  void construct(size_type root = 0) {
    M_calc_subtree(root, -1);
    M_decompose(root, -1, root);
  }
  void add_edge(size_type u, size_type v) {
    M_graph[u].push_back(v);
    M_graph[v].push_back(u);
  }

  template <class Func> 
  void each_edge(size_type u, size_type v, const Func &func) const {
    while (true) {
      if (label[u] > label[v]) {
        std::swap(u, v);
      }
      if (M_head[u] == M_head[v]) {
        if (label[u] + 1 <= label[v]) {
          func(label[u] + 1, label[v]);
        }
        return;
      }
      func(label[M_head[v]], label[v]);
      v = M_parent[M_head[v]];
    }
  }

  template <class Func> 
  void each_vertex(size_type u, size_type v, const Func &func) const {
    while (true) {
      if (label[u] > label[v]) {
        std::swap(u, v);
      }
      if (M_head[u] == M_head[v]) {
        func(label[u], label[v]);
        return;
      }
      func(label[M_head[v]], label[v]);
      v = M_parent[M_head[v]];
    }
  }

  size_type lca(size_type u, size_type v) const {
    if (label[u] > label[v]) {
      std::swap(u, v);
    }
    while (label[u] <= label[v]) {
      if (M_head[u] == M_head[v]) {
        return u;
      }
      v = M_parent[M_head[v]];
    }
    return v;
  }

  size_type size() const {
    return M_graph.size();
  }
  bool empty() const {
    return M_graph.empty();
  }
  void clear() {
    M_index = 0;
    M_graph.clear();
    M_graph.shrink_to_fit();
    M_size.clear();
    M_size.shrink_to_fit();
    M_parent.clear();
    M_parent.shrink_to_fit();
    M_head.clear();
    M_head.shrink_to_fit();
    label.clear();
    label.shrink_to_fit();
  }

};

/**
 * @title Heavy-Light Decomposition
 */
#line 2 "/Users/kodamankod/Desktop/Programming/Library/container/segment_tree.cpp"

#line 1 "/Users/kodamankod/Desktop/Programming/Library/other/monoid.cpp"

#include <type_traits>
#line 4 "/Users/kodamankod/Desktop/Programming/Library/other/monoid.cpp"

template <class T, class = void>
class has_identity: public std::false_type { };

template <class T>
class has_identity<T, typename std::conditional<false, decltype(T::identity()), void>::type>: public std::true_type { };

template <class T, bool HasIdentity>
class fixed_monoid_impl: public T {
public:
  static constexpr typename T::type convert(const typename T::type &value) { return value; }
  static constexpr typename T::type revert(const typename T::type &value) { return value; }

};

template <class T>
class fixed_monoid_impl<T, false>: private T {
public:
  class type {
  public:
    typename T::type value;
    bool state;
  
    explicit constexpr type(): value(typename T::type { }), state(false) { }
    explicit constexpr type(const typename T::type &value): value(value), state(true) { }

  };

  static constexpr type convert(const typename T::type &value) { return type(value); }
  static constexpr typename T::type revert(const type &value) { return value.value; }

  static constexpr type identity() { return type(); }
  static constexpr type operation(const type &v1, const type &v2) {
    if (!v1.state) return v2;
    if (!v2.state) return v1;
    return type(T::operation(v1.value, v2.value));
  }

};

template <class T>
using fixed_monoid = fixed_monoid_impl<T, has_identity<T>::value>;

template <class T, bool HasIdentity>
class fixed_combined_monoid_impl {
public:
  using value_structure    = typename T::value_structure;
  using operator_structure = fixed_monoid<typename T::operator_structure>;

  template <class... Args>
  static constexpr typename value_structure::type operation(
    const typename value_structure::type    &val,
    const typename operator_structure::type &op,
    Args&&... args) {
    return T::opration(val, op, std::forward<Args>(args)...);
  }

};

template <class T>
class fixed_combined_monoid_impl<T, false> {
public:
  using value_structure    = typename T::value_structure;
  using operator_structure = fixed_monoid<typename T::operator_structure>;

  template <class... Args>
  static constexpr typename value_structure::type operation(
    const typename value_structure::type    &val,
    const typename operator_structure::type &op,
    Args&&... args) {
    if (!op.state) return val;
    return T::operation(val, op.value, std::forward<Args>(args)...);
  }

};

template <class T>
using fixed_combined_monoid = fixed_combined_monoid_impl<T, has_identity<typename T::operator_structure>::value>;
#line 8 "/Users/kodamankod/Desktop/Programming/Library/container/segment_tree.cpp"

template <class Monoid>
class segment_tree {
public:
  using structure    = Monoid;
  using value_monoid = typename Monoid::value_structure;
  using value_type   = typename Monoid::value_structure::type;
  using size_type    = size_t;

private:
  using fixed_value_monoid = fixed_monoid<value_monoid>;
  using fixed_value_type   = typename fixed_value_monoid::type;

  std::vector<fixed_value_type> M_tree;

  void M_fix_change(const size_type index) {
    M_tree[index] = fixed_value_monoid::operation(M_tree[index << 1 | 0], M_tree[index << 1 | 1]);
  }

public:
  segment_tree() = default;
  explicit segment_tree(const size_type size) { initialize(size); }
  template <class InputIterator>
  explicit segment_tree(InputIterator first, InputIterator last) { construct(first, last); }

  void initialize(const size_type size) {
    clear();
    M_tree.assign(size << 1, fixed_value_monoid::identity());
  }

  template <class InputIterator>
  void construct(InputIterator first, InputIterator last) {
    clear();
    const size_type size = std::distance(first, last);
    M_tree.reserve(size << 1);
    M_tree.assign(size, fixed_value_monoid::identity());
    std::transform(first, last, std::back_inserter(M_tree), [&](const value_type &value) {
      return fixed_value_monoid::convert(value);
    });
    for (size_type index = size - 1; index != 0; --index) {
      M_fix_change(index);
    }
  }

  void assign(size_type index, const value_type &value) {
    index += size();
    M_tree[index] = fixed_value_monoid::convert(value);
    while (index != 1) {
      index >>= 1;
      M_fix_change(index);
    } 
  }

  value_type at(const size_type index) const { 
    return fixed_value_monoid::revert(M_tree[index + size()]);
  }

  value_type fold(size_type first, size_type last) const {
    first += size();
    last += size();
    fixed_value_type fold_l = fixed_value_monoid::identity();
    fixed_value_type fold_r = fixed_value_monoid::identity();
    while (first != last) {
      if (first & 1) {
        fold_l = fixed_value_monoid::operation(fold_l, M_tree[first]);
        ++first;
      }
      if (last & 1) {
        --last;
        fold_r = fixed_value_monoid::operation(M_tree[last], fold_r);      
      }
      first >>= 1;
      last  >>= 1;
    }
    return fixed_value_monoid::revert(fixed_value_monoid::operation(fold_l, fold_r));
  }

  void clear() {
    M_tree.clear();
    M_tree.shrink_to_fit();
  }

  size_type size() const { 
    return M_tree.size() >> 1;
  }

};

/**
 * @title Segment Tree
 */
#line 19 "main.cpp"

using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;

constexpr i32 inf32 = (i32(1) << 30) - 1;
constexpr i64 inf64 = (i64(1) << 62) - 1;

struct st_monoid {
  static inline heavy_light_decomposition *hld = nullptr;
  struct value_structure {
    using type = i32;
    static type operation(const type& v1, const type& v2) { 
      return hld -> lca(v1, v2);
    }
  };
};

int main() {
  i32 N, K, Q;
  std::cin >> N >> K >> Q;
  std::vector<i32> vivace(N);
  std::vector<std::vector<i32>> graph(N);
  for (auto &x: vivace) {
    std::cin >> x;
  }
  std::vector<i32> lives(K);
  for (i32 &x: lives) {
    std::cin >> x;
    --x;
  }
  heavy_light_decomposition hld(N);
  st_monoid::hld = &hld;
  for (auto i: range(0, N - 1)) {
    i32 a, b;
    std::cin >> a >> b;
    --a; --b;
    graph[a].push_back(b);
    graph[b].push_back(a);
    hld.add_edge(a, b);
  }
  hld.construct();
  segment_tree<st_monoid> seg(K);
  for (i32 i: range(0, K)) {
    seg.assign(i, lives[i]);
  }
  fix_point([&](auto dfs, i32 u, i32 p) -> void {
    if (p != -1) {
      chmax(vivace[u], vivace[p]);
    }
    for (auto v: graph[u]) {
      if (v != p) {
        dfs(v, u);
      }
    }
  })(0, -1);
  while (Q--) {
    i32 type;
    std::cin >> type;
    if (type == 1) {
      i32 x, y;
      std::cin >> x >> y;
      --x; --y;
      seg.assign(x, y);
    }
    else {
      i32 l, r;
      std::cin >> l >> r;
      --l;
      std::cout << vivace[seg.fold(l, r)] << '\n';
    }
  }
  return 0;
}
0