結果
| 問題 |
No.1030 だんしんぐぱーりない
|
| コンテスト | |
| ユーザー |
KoD
|
| 提出日時 | 2020-08-03 12:20:41 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 420 ms / 2,000 ms |
| コード長 | 13,458 bytes |
| コンパイル時間 | 6,025 ms |
| コンパイル使用メモリ | 146,244 KB |
| 最終ジャッジ日時 | 2025-01-12 13:36:27 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 40 |
ソースコード
#line 1 "main.cpp"
/**
* @title Template
*/
#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
#line 2 "/Users/kodamankod/Desktop/Programming/Library/other/chmin_chmax.cpp"
template <class T, class U>
constexpr bool chmin(T &lhs, const U &rhs) {
if (lhs > rhs) {
lhs = rhs;
return true;
}
return false;
}
template <class T, class U>
constexpr bool chmax(T &lhs, const U &rhs) {
if (lhs < rhs) {
lhs = rhs;
return true;
}
return false;
}
/**
* @title Chmin/Chmax
*/
#line 2 "/Users/kodamankod/Desktop/Programming/Library/other/range.cpp"
#line 4 "/Users/kodamankod/Desktop/Programming/Library/other/range.cpp"
class range {
public:
class iterator {
private:
int64_t M_position;
public:
constexpr iterator(int64_t position) noexcept: M_position(position) { }
constexpr void operator ++ () noexcept { ++M_position; }
constexpr bool operator != (iterator other) const noexcept { return M_position != other.M_position; }
constexpr int64_t operator * () const noexcept { return M_position; }
};
class reverse_iterator {
private:
int64_t M_position;
public:
constexpr reverse_iterator(int64_t position) noexcept: M_position(position) { }
constexpr void operator ++ () noexcept { --M_position; }
constexpr bool operator != (reverse_iterator other) const noexcept { return M_position != other.M_position; }
constexpr int64_t operator * () const noexcept { return M_position; }
};
private:
const iterator M_first, M_last;
public:
constexpr range(int64_t first, int64_t last) noexcept: M_first(first), M_last(std::max(first, last)) { }
constexpr iterator begin() const noexcept { return M_first; }
constexpr iterator end() const noexcept { return M_last; }
constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator(*M_last - 1); }
constexpr reverse_iterator rend() const noexcept { return reverse_iterator(*M_first - 1); }
};
/**
* @title Range
*/
#line 2 "/Users/kodamankod/Desktop/Programming/Library/other/rev.cpp"
#include <type_traits>
#include <iterator>
#line 6 "/Users/kodamankod/Desktop/Programming/Library/other/rev.cpp"
template <class T>
class rev_impl {
public:
using iterator = typename std::decay<T>::type::reverse_iterator;
private:
const iterator M_begin;
const iterator M_end;
public:
constexpr rev_impl(T &&cont) noexcept: M_begin(std::rbegin(cont)), M_end(std::rend(cont)) { }
constexpr iterator begin() const noexcept { return M_begin; }
constexpr iterator end() const noexcept { return M_end; }
};
template <class T>
constexpr decltype(auto) rev(T &&cont) {
return rev_impl<T>(std::forward<T>(cont));
}
/**
* @title Reverser
*/
#line 2 "/Users/kodamankod/Desktop/Programming/Library/other/fix_point.cpp"
#line 4 "/Users/kodamankod/Desktop/Programming/Library/other/fix_point.cpp"
template <class Func>
struct fix_point_impl: private Func {
explicit constexpr fix_point_impl(Func &&func): Func(std::forward<Func>(func)) { }
template <class... Args>
constexpr decltype(auto) operator () (Args &&... args) const {
return Func::operator()(*this, std::forward<Args>(args)...);
}
};
template <class Func>
constexpr decltype(auto) fix_point(Func &&func) {
return fix_point_impl<Func>(std::forward<Func>(func));
}
/**
* @title Lambda Recursion
*/
#line 2 "/Users/kodamankod/Desktop/Programming/Library/graph/heavy_light_decomposition.cpp"
#include <cstddef>
#line 6 "/Users/kodamankod/Desktop/Programming/Library/graph/heavy_light_decomposition.cpp"
class heavy_light_decomposition {
public:
using size_type = size_t;
private:
std::vector<std::vector<size_type>> M_graph;
std::vector<size_type> M_size, M_parent, M_head;
size_type M_index;
void M_calc_subtree(size_type u, size_type p) {
M_size[u] = 1;
for (auto v: M_graph[u]) {
if (v != p) {
M_calc_subtree(v, u);
M_size[u] += M_size[v];
}
}
}
void M_decompose(size_type u, size_type p, size_type h) {
label[u] = M_index;
M_head[u] = h;
M_parent[u] = p;
++M_index;
size_type max = 0, heavy = -1;
for (auto v: M_graph[u]) {
if (v != p) {
if (max < M_size[v]) {
max = M_size[v];
heavy = v;
}
}
}
if (heavy == size_type(-1)) return;
M_decompose(heavy, u, h);
for (auto v: M_graph[u]) {
if (v != p && v != heavy) {
M_decompose(v, u, v);
}
}
}
public:
std::vector<size_type> label;
heavy_light_decomposition() { }
explicit heavy_light_decomposition(size_type size) { initialize(size); }
void initialize(size_type size) {
clear();
M_index = 0;
M_graph.assign(size, { });
M_size.assign(size, 0);
M_parent.assign(size, 0);
M_head.assign(size, 0);
label.assign(size, 0);
}
void construct(size_type root = 0) {
M_calc_subtree(root, -1);
M_decompose(root, -1, root);
}
void add_edge(size_type u, size_type v) {
M_graph[u].push_back(v);
M_graph[v].push_back(u);
}
template <class Func>
void each_edge(size_type u, size_type v, const Func &func) const {
while (true) {
if (label[u] > label[v]) {
std::swap(u, v);
}
if (M_head[u] == M_head[v]) {
if (label[u] + 1 <= label[v]) {
func(label[u] + 1, label[v]);
}
return;
}
func(label[M_head[v]], label[v]);
v = M_parent[M_head[v]];
}
}
template <class Func>
void each_vertex(size_type u, size_type v, const Func &func) const {
while (true) {
if (label[u] > label[v]) {
std::swap(u, v);
}
if (M_head[u] == M_head[v]) {
func(label[u], label[v]);
return;
}
func(label[M_head[v]], label[v]);
v = M_parent[M_head[v]];
}
}
size_type lca(size_type u, size_type v) const {
if (label[u] > label[v]) {
std::swap(u, v);
}
while (label[u] <= label[v]) {
if (M_head[u] == M_head[v]) {
return u;
}
v = M_parent[M_head[v]];
}
return v;
}
size_type size() const {
return M_graph.size();
}
bool empty() const {
return M_graph.empty();
}
void clear() {
M_index = 0;
M_graph.clear();
M_graph.shrink_to_fit();
M_size.clear();
M_size.shrink_to_fit();
M_parent.clear();
M_parent.shrink_to_fit();
M_head.clear();
M_head.shrink_to_fit();
label.clear();
label.shrink_to_fit();
}
};
/**
* @title Heavy-Light Decomposition
*/
#line 2 "/Users/kodamankod/Desktop/Programming/Library/container/segment_tree.cpp"
#line 1 "/Users/kodamankod/Desktop/Programming/Library/other/monoid.cpp"
#include <type_traits>
#line 4 "/Users/kodamankod/Desktop/Programming/Library/other/monoid.cpp"
template <class T, class = void>
class has_identity: public std::false_type { };
template <class T>
class has_identity<T, typename std::conditional<false, decltype(T::identity()), void>::type>: public std::true_type { };
template <class T, bool HasIdentity>
class fixed_monoid_impl: public T {
public:
static constexpr typename T::type convert(const typename T::type &value) { return value; }
static constexpr typename T::type revert(const typename T::type &value) { return value; }
};
template <class T>
class fixed_monoid_impl<T, false>: private T {
public:
class type {
public:
typename T::type value;
bool state;
explicit constexpr type(): value(typename T::type { }), state(false) { }
explicit constexpr type(const typename T::type &value): value(value), state(true) { }
};
static constexpr type convert(const typename T::type &value) { return type(value); }
static constexpr typename T::type revert(const type &value) { return value.value; }
static constexpr type identity() { return type(); }
static constexpr type operation(const type &v1, const type &v2) {
if (!v1.state) return v2;
if (!v2.state) return v1;
return type(T::operation(v1.value, v2.value));
}
};
template <class T>
using fixed_monoid = fixed_monoid_impl<T, has_identity<T>::value>;
template <class T, bool HasIdentity>
class fixed_combined_monoid_impl {
public:
using value_structure = typename T::value_structure;
using operator_structure = fixed_monoid<typename T::operator_structure>;
template <class... Args>
static constexpr typename value_structure::type operation(
const typename value_structure::type &val,
const typename operator_structure::type &op,
Args&&... args) {
return T::opration(val, op, std::forward<Args>(args)...);
}
};
template <class T>
class fixed_combined_monoid_impl<T, false> {
public:
using value_structure = typename T::value_structure;
using operator_structure = fixed_monoid<typename T::operator_structure>;
template <class... Args>
static constexpr typename value_structure::type operation(
const typename value_structure::type &val,
const typename operator_structure::type &op,
Args&&... args) {
if (!op.state) return val;
return T::operation(val, op.value, std::forward<Args>(args)...);
}
};
template <class T>
using fixed_combined_monoid = fixed_combined_monoid_impl<T, has_identity<typename T::operator_structure>::value>;
#line 8 "/Users/kodamankod/Desktop/Programming/Library/container/segment_tree.cpp"
template <class Monoid>
class segment_tree {
public:
using structure = Monoid;
using value_monoid = typename Monoid::value_structure;
using value_type = typename Monoid::value_structure::type;
using size_type = size_t;
private:
using fixed_value_monoid = fixed_monoid<value_monoid>;
using fixed_value_type = typename fixed_value_monoid::type;
std::vector<fixed_value_type> M_tree;
void M_fix_change(const size_type index) {
M_tree[index] = fixed_value_monoid::operation(M_tree[index << 1 | 0], M_tree[index << 1 | 1]);
}
public:
segment_tree() = default;
explicit segment_tree(const size_type size) { initialize(size); }
template <class InputIterator>
explicit segment_tree(InputIterator first, InputIterator last) { construct(first, last); }
void initialize(const size_type size) {
clear();
M_tree.assign(size << 1, fixed_value_monoid::identity());
}
template <class InputIterator>
void construct(InputIterator first, InputIterator last) {
clear();
const size_type size = std::distance(first, last);
M_tree.reserve(size << 1);
M_tree.assign(size, fixed_value_monoid::identity());
std::transform(first, last, std::back_inserter(M_tree), [&](const value_type &value) {
return fixed_value_monoid::convert(value);
});
for (size_type index = size - 1; index != 0; --index) {
M_fix_change(index);
}
}
void assign(size_type index, const value_type &value) {
index += size();
M_tree[index] = fixed_value_monoid::convert(value);
while (index != 1) {
index >>= 1;
M_fix_change(index);
}
}
value_type at(const size_type index) const {
return fixed_value_monoid::revert(M_tree[index + size()]);
}
value_type fold(size_type first, size_type last) const {
first += size();
last += size();
fixed_value_type fold_l = fixed_value_monoid::identity();
fixed_value_type fold_r = fixed_value_monoid::identity();
while (first != last) {
if (first & 1) {
fold_l = fixed_value_monoid::operation(fold_l, M_tree[first]);
++first;
}
if (last & 1) {
--last;
fold_r = fixed_value_monoid::operation(M_tree[last], fold_r);
}
first >>= 1;
last >>= 1;
}
return fixed_value_monoid::revert(fixed_value_monoid::operation(fold_l, fold_r));
}
void clear() {
M_tree.clear();
M_tree.shrink_to_fit();
}
size_type size() const {
return M_tree.size() >> 1;
}
};
/**
* @title Segment Tree
*/
#line 19 "main.cpp"
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
constexpr i32 inf32 = (i32(1) << 30) - 1;
constexpr i64 inf64 = (i64(1) << 62) - 1;
struct st_monoid {
static inline heavy_light_decomposition *hld = nullptr;
struct value_structure {
using type = i32;
static type operation(const type& v1, const type& v2) {
return hld -> lca(v1, v2);
}
};
};
int main() {
i32 N, K, Q;
std::cin >> N >> K >> Q;
std::vector<i32> vivace(N);
std::vector<std::vector<i32>> graph(N);
for (auto &x: vivace) {
std::cin >> x;
}
std::vector<i32> lives(K);
for (i32 &x: lives) {
std::cin >> x;
--x;
}
heavy_light_decomposition hld(N);
st_monoid::hld = &hld;
for (auto i: range(0, N - 1)) {
i32 a, b;
std::cin >> a >> b;
--a; --b;
graph[a].push_back(b);
graph[b].push_back(a);
hld.add_edge(a, b);
}
hld.construct();
segment_tree<st_monoid> seg(K);
for (i32 i: range(0, K)) {
seg.assign(i, lives[i]);
}
fix_point([&](auto dfs, i32 u, i32 p) -> void {
if (p != -1) {
chmax(vivace[u], vivace[p]);
}
for (auto v: graph[u]) {
if (v != p) {
dfs(v, u);
}
}
})(0, -1);
while (Q--) {
i32 type;
std::cin >> type;
if (type == 1) {
i32 x, y;
std::cin >> x >> y;
--x; --y;
seg.assign(x, y);
}
else {
i32 l, r;
std::cin >> l >> r;
--l;
std::cout << vivace[seg.fold(l, r)] << '\n';
}
}
return 0;
}
KoD