結果

問題 No.1096 Range Sums
ユーザー siumaidayosiumaidayo
提出日時 2020-08-04 14:34:46
言語 C
(gcc 12.3.0)
結果
AC  
実行時間 19 ms / 2,000 ms
コード長 7,061 bytes
コンパイル時間 503 ms
コンパイル使用メモリ 36,864 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-14 15:38:57
合計ジャッジ時間 1,422 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 1 ms
5,376 KB
testcase_10 AC 19 ms
5,376 KB
testcase_11 AC 19 ms
5,376 KB
testcase_12 AC 18 ms
5,376 KB
testcase_13 AC 19 ms
5,376 KB
testcase_14 AC 19 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include<stdbool.h>
#include<assert.h>
#include<time.h>
#include<ctype.h>
typedef long long ll;
typedef long double ld;
#define rep(i,l,r)for(ll i=(l);i<(r);i++)
#define repp(i,l,r,k)for(ll i=(l);i<(r);i+=(k))
#define rrep(i,l,r)for(ll i=(l);i>=(r);i--)
#define INF (1LL<<62)
#define MOD1 1000000007
#define MOD2 998244353
#define MAX_N (1 << 20)
#define YES printf("Yes\n")
#define NO printf("No\n")
#define PN printf("\n")
#define charsize 100005 //10^5+5
#define PI 3.141592653589793238

void swap(ll *a, ll *b){ll c;c=*b;*b=*a;*a= c;}
void cin(ll *n){ scanf("%lld",&(*n)); }
ll max2(ll a,ll b){return a>=b?a:b;}
ll min2(ll a,ll b){return a>=b?b:a;}
ll min3(ll a, ll b, ll c){return (a<=b && a<=c) ? a : b<=c ? b : c;}
ll max3(ll a, ll b, ll c){return (a>=b && a>=c) ? a : b>=c ? b : c;}
ll minn(ll n, ll a[]){ll b=INF;rep(i,0,n) b=min2(b,a[i]);return b;}
ll maxn(ll n, ll a[]){ll b=-INF;rep(i,0,n) b=max2(b,a[i]);return b;}
ll POW(ll a, ll b){ll c=1;rep(i,0,b) c*=a;return c;}
double POW_d(double a, double b){double c=1;rep(i,0,b) c*=a;return c;}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll mod_MOD1(ll n){n+= n<0?((-n)/MOD1+1)*MOD1:0; return n%=MOD1;}
ll mod_p(ll n ,ll p){n+= n<0?((-n)/p+1)*p:0; return n%=p;}
ll change_into_num(char s[] , ll len, ll p){ return !p ? 0 : POW(10,p-1)*(s[len-p]-'0') + change_into_num(s,len,p-1); }
ll digits(ll a, ll b){return a/b?1+digits(a/b,b):1;}
ll base(ll n, ll a, ll i){return i==1?n%a:base(n/a,a,i-1);}
ll is_inArr1(ll x, ll n){ return ( x<0 || x>=n ) ? 0 : 1 ; }
ll is_inArr2(ll y, ll x, ll h, ll w){ return ( y<0 || y>=h || x<0 || x>=w ) ? 0 : 1 ; }


void lr_lower( int *l, int *r, ll am, ll val , int type ){ (type<3) ? ( am < val ?  ( *l = (*l+*r)/2 ) : ( *r= (*l+*r)/2 ) ) : ( am <= val ? ( *l = (*l+*r)/2 ) : ( *r= (*l+*r)/2 ) ); }
void lr_upper( int *l, int *r, ll am, ll val , int type ){ (type<3) ? ( am <= val ?  ( *l = (*l+*r)/2 ) : ( *r= (*l+*r)/2 ) ) : ( am < val ? ( *l = (*l+*r)/2 ) : ( *r= (*l+*r)/2 ) ); }
int cmp_lower( ll a, ll b, int type ){ return (type==1) ? ( a==b ? 1 : 0 ) : (type==2) ? ( a>=b ? 1 : 0 ) : ( a>b ? 1 : 0 ) ; }
int cmp_upper( ll a, ll b, int type ){ return (type==1) ? ( a==b ? 1 : 0 ) : (type==2) ? ( a<=b ? 1 : 0 ) : ( a<b ? 1 : 0 ) ; }
// return smallest p  which meets  a[p]==val :1  >=:2   >:3
ll lower_bound( ll a[], int l, int r, ll val , int type ){  while(r-l>1) lr_lower(&l,&r,a[ (l+r)/2 ],val,type);  return cmp_lower(a[l],val,type) ? l : cmp_lower(a[r],val,type) ? r : -1;  }
// return biggest p  which meets   a[p]==val :1  <=:2   <:3
ll upper_bound( ll a[], int l, int r, ll val , int type ){  while(r-l>1) lr_upper(&l,&r,a[ (l+r)/2 ],val,type); return cmp_upper(a[r],val,type) ? r : cmp_upper(a[l],val,type) ? l : -1; }
// count i  which meets ai==x
ll count(ll a[], int l, int r, ll x){  int p = lower_bound(a,l,r,x,1);  return p==-1 ? 0 : upper_bound(a,p,r,x,1)-p+1; }

ll *factors[2] , fac_cnt=0 , is_factor_prepared=0;
ll factor_pre(){  rep(i,0,1){ if(is_factor_prepared++) return 0; }  ll tmp=(1e6)/2+1, fac_tmp[tmp];  rep(i,0,tmp){fac_tmp[i]=i?2*i+1:2;}  rep(i,1,tmp){if(fac_tmp[i]){  repp(j,3,tmp/(2*i+1)+1,2 ){  if( j*(2*i+1)<tmp ) fac_tmp[ (j*(2*i+1)-1)/2 ]=0;  }  }else continue;}  rep(i,0,tmp){if(fac_tmp[i]){  rep(j,0,2){ factors[j] = realloc( factors[j] , sizeof(ll)*( fac_cnt +1 ) );  factors[j][j?fac_cnt++:fac_cnt]=j?0:fac_tmp[i];  }  } }  return 0;  }
ll factor(ll n, ll new_common_plus){ factor_pre();  rep(i,0,fac_cnt){ ll cnt=0; rep(j,0,1){ while( ( cnt+= n %factors[0][i]==0 ? 1 : 0 )  && (n/=factors[0][i]) %factors[0][i]==0 ) continue; } factors[1][i]= new_common_plus==1 ? cnt :  new_common_plus==2 ? max2(factors[1][i],cnt) : factors[1][i]+cnt ;  if( factors[0][i]> n ) break; } return n; }
ll judge_prime(ll n){ factor_pre(); rep(i,0,fac_cnt){ if(n<factors[0][i]*factors[0][i] || n==factors[0][i]) break; else if(n%factors[0][i]==0) n/=n; }  return n==1?0:1; }

ll *mf_arr,*inv_arr,*finv_arr,is_minv_made=0,is_mf_made=0,num_of_inv=2*1e6+10;
ll makeinv(ll n , ll mod){  rep(i,0,1){if(is_minv_made++) return 0;}  inv_arr = realloc(inv_arr, sizeof(ll)*2 );  finv_arr = realloc(finv_arr, sizeof(ll)*2 );  inv_arr[1]=1;finv_arr[0]=finv_arr[1]=1;  rep(i,2,n+1){  inv_arr = realloc(inv_arr, sizeof(ll)*(i+1) );  finv_arr = realloc(finv_arr, sizeof(ll)*(i+1) );  inv_arr[i]= mod - inv_arr[mod%i] * (mod / i) % mod;  finv_arr[i] = finv_arr[i - 1] * inv_arr[i] % mod;  }  return 0; }
ll make_mf(ll n, ll mod){  rep(i,0,1){ if(is_mf_made++) return 0; }  mf_arr = realloc(mf_arr, sizeof(ll)*2 );  ll x=1;  mf_arr[0]=mf_arr[1]=x;  rep(i,2,n+1){   x=x*i%mod;  mf_arr = realloc(mf_arr, sizeof(ll)*(i+1) );  mf_arr[i]=x; }  return 0;  }
ll m_inv(ll x, ll mod, ll is_fac ){ makeinv(num_of_inv,mod);  return is_fac?finv_arr[x]:inv_arr[x]; }
ll m_f(ll x, ll mod){  make_mf(num_of_inv,mod);  return mf_arr[x];  }
ll mod_nck(ll n, ll k, ll mod){ return m_f(n,mod)*m_inv(k,mod,1)%mod*m_inv(n-k,mod,1)%mod; }
ll m_p(ll r,ll n,ll mod){  ll t=1,s=r;  while(n>0){ t = (n&1) ? t*s%mod : t;  s=s*s%mod; n>>=1; }  return r?t:0;  }
ll m_mul2(ll a, ll b, ll mod){ return a*b%mod; }
ll m_mul3(ll a, ll b, ll c, ll mod){ return m_mul2(a*b%mod,c,mod); }
ll m_mul4(ll a, ll b, ll c, ll d, ll mod){ return m_mul3(a*b%mod,c,d,mod); }
ll m_mul5(ll a, ll b, ll c, ll d, ll e, ll mod){ return m_mul4(a*b%mod,c,d,e,mod); }

int upll(const void*a, const void*b){return*(ll*)a<*(ll*)b?-1:*(ll*)a>*(ll*)b?1:0;}
int downll(const void*a, const void*b){return*(ll*)a<*(ll*)b?1:*(ll*)a>*(ll*)b?-1:0;}
int cmp_string( const void * a , const void * b ) {  return strcmp( (char *)a , (char *)b ); }  // qsort((void*)s,n,sizeof(s[0]),int_sort );
int cmp_char(const void * a, const void * b) { return *(char *)a - *(char *)b;}
void sortup(ll*a,int n){qsort(a,n,sizeof(ll),upll);}
void sortdown(ll*a,int n){qsort(a,n,sizeof(ll),downll);}
void sort_string(int n,int size,char s[][size]){ qsort( (void*)s , n , sizeof(s[0]) , cmp_string ); }
void sort_char(char *s){ qsort( (void *)s , strlen(s) , sizeof(char) , cmp_char ); }
ll unique_string(ll n ,ll size, char s[][size]){ ll ans=1; rep(i,1,n) if( strcmp(s[i],s[i-1]) ) ans++; return ans; }
ll unique_num(ll n , ll a[]){ ll ans=1; rep(i,1,n) if( a[i]!=a[i-1] ) ans++; return ans; }

typedef struct{ ll a , b;}fr;
int cmp1( const void *p, const void *q ) { return ((fr*)p) ->a - ((fr*)q)->a;}
int cmp2( const void *p, const void *q ) { return ((fr*)q) ->a - ((fr*)p)->a;}
void strsortup(fr*a,int n){qsort(a,n,sizeof(fr),cmp1);}
void strsortdown(fr*a,int n){qsort(a,n,sizeof(fr),cmp2);}




char s[1151154];
int main(void){
    // fgets(s,sizeof(s),stdin); 
    ll n;
    ll ans=0;
    cin(&n);
    // scanf("%s",s);
    ll a;
    rep(i,0,n){
        cin(&a);
        ans+=a*(n-i)*(i+1);
    }
    printf("%lld\n",ans);
    return 0;
}


/*
    while (ng + 1 < ok) {
		int p = ng + (ok - ng) / 2;
		int cnt = 0;
		for (i = 0; i < n; i++) {
			cnt += (a[i] + p - 1) / p - 1;
		}
		if (cnt <= k) ok = p; else ng = p;
    }
*/
0