結果
| 問題 |
No.890 移調の限られた旋法
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-08-04 19:43:41 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 20 ms / 2,000 ms |
| コード長 | 5,150 bytes |
| コンパイル時間 | 988 ms |
| コンパイル使用メモリ | 84,956 KB |
| 最終ジャッジ日時 | 2025-01-12 14:23:28 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 32 |
ソースコード
#include <iostream>
#include <algorithm>
#include <numeric>
#include <vector>
template <int MOD>
struct ModInt {
using lint = long long;
int val;
// constructor
ModInt(lint v = 0) : val(v % MOD) {
if (val < 0) val += MOD;
};
// unary operator
ModInt operator+() const { return ModInt(val); }
ModInt operator-() const { return ModInt(MOD - val); }
ModInt inv() const { return this->pow(MOD - 2); }
// arithmetic
ModInt operator+(const ModInt& x) const { return ModInt(*this) += x; }
ModInt operator-(const ModInt& x) const { return ModInt(*this) -= x; }
ModInt operator*(const ModInt& x) const { return ModInt(*this) *= x; }
ModInt operator/(const ModInt& x) const { return ModInt(*this) /= x; }
ModInt pow(lint n) const {
auto x = ModInt(1);
auto b = *this;
while (n > 0) {
if (n & 1) x *= b;
n >>= 1;
b *= b;
}
return x;
}
// compound assignment
ModInt& operator+=(const ModInt& x) {
if ((val += x.val) >= MOD) val -= MOD;
return *this;
}
ModInt& operator-=(const ModInt& x) {
if ((val -= x.val) < 0) val += MOD;
return *this;
}
ModInt& operator*=(const ModInt& x) {
val = lint(val) * x.val % MOD;
return *this;
}
ModInt& operator/=(const ModInt& x) { return *this *= x.inv(); }
// compare
bool operator==(const ModInt& b) const { return val == b.val; }
bool operator!=(const ModInt& b) const { return val != b.val; }
bool operator<(const ModInt& b) const { return val < b.val; }
bool operator<=(const ModInt& b) const { return val <= b.val; }
bool operator>(const ModInt& b) const { return val > b.val; }
bool operator>=(const ModInt& b) const { return val >= b.val; }
// I/O
friend std::istream& operator>>(std::istream& is, ModInt& x) noexcept {
lint v;
is >> v;
x = v;
return is;
}
friend std::ostream& operator<<(std::ostream& os, const ModInt& x) noexcept { return os << x.val; }
};
template <class T>
struct Combination {
int max_n;
std::vector<T> f, invf;
explicit Combination(int n)
: max_n(n), f(n + 1), invf(n + 1) {
f[0] = 1;
for (int i = 1; i <= n; ++i) {
f[i] = f[i - 1] * i;
}
invf[max_n] = f[max_n].inv();
for (int i = max_n - 1; i >= 0; --i) {
invf[i] = invf[i + 1] * (i + 1);
}
}
T fact(int n) const { return n < 0 ? T(0) : f[n]; }
T invfact(int n) const { return n < 0 ? T(0) : invf[n]; }
T perm(int a, int b) const {
return a < b || b < 0 ? T(0) : f[a] * invf[a - b];
}
T binom(int a, int b) const {
return a < b || b < 0 ? T(0) : f[a] * invf[a - b] * invf[b];
}
};
struct Prime {
int max_n;
std::vector<int> primes;
std::vector<bool> isp;
explicit Prime(int max_n)
: max_n(max_n), isp(max_n + 1, true) {
isp[0] = isp[1] = false;
for (int i = 2; i * i <= max_n; ++i) {
if (isp[i]) {
for (int j = i; i * j <= max_n; ++j) {
isp[i * j] = false;
}
}
}
for (int p = 2; p <= max_n; ++p) {
if (isp[p]) primes.push_back(p);
}
}
template <class T>
bool isprime(T n) const {
if (n <= max_n) return isp[n];
for (T p : primes) {
if (p * p > n) break;
if (n % p == 0) return false;
}
return true;
}
template <class T>
std::vector<std::pair<T, int>> factorize(T n) const {
std::vector<std::pair<T, int>> facts;
for (T p : primes) {
if (p * p > n) break;
if (n % p != 0) continue;
int exp = 0;
while (n % p == 0) {
n /= p;
++exp;
}
facts.emplace_back(p, exp);
}
if (n > 1) {
facts.emplace_back(n, 1);
}
return facts;
}
template <class T>
static std::vector<T> divisors(T n) {
std::vector<T> ret;
for (T p = 1; p * p <= n; ++p) {
if (n % p != 0) continue;
ret.push_back(p);
if (n / p == p) continue;
ret.push_back(n / p);
}
return ret;
}
};
constexpr int MOD = 1000000007;
using mint = ModInt<MOD>;
const Combination<mint> C(1000000);
void solve() {
int n, k;
std::cin >> n >> k;
int g = std::gcd(n, k);
auto ds = Prime::divisors(g);
std::sort(ds.rbegin(), ds.rend());
int m = ds.size();
std::vector<mint> pat(m, 0);
mint ans = 0;
for (int i = 0; i < m; ++i) {
auto d = ds[i]; // number of segments
pat[i] = C.binom(n / d, k / d);
for (int j = 0; j < i; ++j) {
if (ds[j] % d != 0) continue;
pat[i] -= pat[j];
}
if (d != 1) ans += pat[i];
}
std::cout << ans << "\n";
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
solve();
return 0;
}