結果
問題 | No.480 合計 |
ユーザー | UMRgurashi |
提出日時 | 2020-08-05 12:26:44 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 6,321 bytes |
コンパイル時間 | 1,013 ms |
コンパイル使用メモリ | 106,600 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-16 05:40:50 |
合計ジャッジ時間 | 1,799 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
ソースコード
#include <iostream> #include<algorithm> #include<string> #include <cmath> #include <vector> #include <map> #include <cstdio> #include <iomanip> #include<set> #include <numeric> #include <queue> using namespace std; #pragma region Macros #define int long long #define double long double constexpr int MOD = 1000000007; constexpr double PI = 3.14159265358979323846; const int INF = 1e12; const int dx[8] = { 1, 0, -1, 0, 1, -1, -1, 1 }; const int dy[8] = { 0, 1, 0, -1, 1, 1, -1, -1 }; const int days[13] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; #define krep(i,k,n) for(int i=(k);i<n+k;i++) #define Krep(i,k,n) for(int i=(k);i<n;i++) #define rep(i,n) for(int i=0;i<n;i++) #define rrep(i,n) for(int i=n-1;i>=0;i--) #define Rrep(i,n) for(int i=n;i>0;i--) #define REP(i,n) for(int i=1;i<=n;i++) #define LAST(x) x[x.size()-1] #define ALL(x) (x).begin(),(x).end() #define MAX(x) *max_element(ALL(x)) #define MIN(x) *min_element(ALL(x) #define swap(a,b) (a += b,b = a - b,a -= b) #define DIVCEIL(a,b) ((a+b-1)/b) #define SUM1n(n) ((n)*(n+1)/2) #define SUM1n2(n) (n*(2*n+1)*(n+1))/6 #define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1)) #define PB push_back #define Fi first #define Se second int intpow(int a, int n) { // a^nのint ver int ans = a; if (n == 0) return 1; else { rep(i, n - 1) ans *= a; return ans; } } int MODPOW(int a, int n, int mod) { // a^n mod int ans = 1; while (n > 0) { if (n & 1) ans = ans * a % mod; a = a * a % mod; n >>= 1; } return ans; } int factorial(int a) { if (a == 0) return 1; else return a * factorial(a - 1); } int MODFACT(int a, int mod) { int ans = 1; REP(i, a) { ans *= i; ans %= MOD; } return ans; } int nPr(int n, int r) { int s = n - r + 1; int sum = 1; for (int i = s; i <= n; i++) sum *= i; return sum; } int MODnPr(int n, int r, int mod) { int s = n - r + 1; int sum = 1; for (int i = s; i <= n; i++) { sum *= i; sum = sum % MOD; } return sum; } //int nCr(int n, int r) int nCr2(int n, int r) { return factorial(n) / (factorial(r) * factorial(n - r)); } int GCD(int a, int b) { if (a < b) swap(a, b); if (b == 0) return a; if (a % b == 0) return b; return GCD(b, a % b); } int LCM(int a, int b) { return a * b / GCD(a, b); } int divisor_count(int n) { //約数の数 int ans = 0; REP(i, sqrt(n)) { if (n % i == 0) ans+=2; if (n == i * i) ans--; } return ans; } int divisor_sum(int n) { //約数の総和 int ans = 0; REP(i, sqrt(n)) { if (n % i == 0) ans += i + n/i; if (n == i * i) ans -= n / i; } return ans; } int CEIL1(int n) { //1桁目切り上げ return (n + 9) / 10 * 10; } int getdigit(int n) { return log10(n) + 1; } int digit(int n, int k) { //nのk桁目 rep(i, k - 1) n /= 10; return n % 10; } int digit_sum(int n) { int sum = 0, dig; while (n) { dig = n % 10; sum += dig; n /= 10; } return sum; } int DIVTIME(int n, int k) { //nをkで何回割れるか的な int div = 0; while (n % k == 0) { div++; n /= k; } return div; } int binary(int n) { //10進数→2進数 int ans = 0; for (int i = 0; n > 0; i++) { ans += n % 2 * intpow(10, i); n /= 2; } return ans; } int binary_2to10(string n) { int ans = 0; rep(i, n.size()) { if (n[i] == '1') ans += intpow(2, n.size() - i - 1); } return ans; } int intabs(int n) { if (n < 0) return -1 * n; else return n; } int Kaibun(int n) { int ans = 0; int d = getdigit(n); REP(i, d) ans += digit(n, i) * pow(10, d - i); return ans; } inline bool is_uru(int y) { if (y % 400 == 0) return 1; if (y % 100 == 0) return 0; if (y % 4 == 0) return 1; return 0; } void next_date(int& y, int& m, int& d) { int day = days[m]; if (m == 2 && is_uru(y)) day++; d++; if (day < d) { m++; d = 1; } if (m == 13) { y++; m = 1; } } double LOG(int a, int b) { return log(b) / log(a); } double DISTANCE(int x1, int y1, int x2, int y2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } double clock_angle(int h, int m) { h %= 12; double mm = 6.0 * m; double nn = 30.0 * h + 0.5 * m; return std::min(fabs(mm - nn), 360.0 - fabs(nn - mm)); } double heron(double a, double b, double c) { double s = (a + b + c) / 2.0; return sqrt(s * (s - a) * (s - b) * (s - c)); } inline bool BETWEEN(int x, int min, int max) { if (min <= x && x <= max) return true; else return false; } inline bool between(int x, int min, int max) { if (min < x && x < max) return true; else return false; } inline bool is_prime(int x) { if (x == 1) return false; if (x == 2) return true; if (x % 2 == 0) return false; double sqrtx = sqrt(x); for (int i = 3; i <= sqrtx; i += 2) { if (x % i == 0) return false; } return true; } inline bool is_sqrt(int n) { if (sqrt(n) == (int)sqrt(n)) return true; else return false; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } #pragma endregion typedef vector<int> vint; typedef vector<vector<int>> vvint; typedef vector<string> vstring; typedef map<int, int> mint; typedef pair<int, int> pint; using Graph = vector<vint>; mint m; const int MAX = 510000; long long fac[MAX], finv[MAX], inv[MAX]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++) { fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } int COM(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } vector<pint> prime_factorize(int N) { vector<pint> res; Krep(i, 2, sqrt(N)) { if (N % i != 0) continue; int ex = 0; while (N % i == 0) { ++ex; N /= i; } res.push_back({ i, ex }); } if (N != 1) res.push_back({ N, 1 }); return res; } double median(vint a) { int N = a.size(); if (N % 2 == 1) return (double)a[N / 2]; else return (double)(a[N / 2 - 1] + a[N / 2]) / 2; } int collatz(int n, int cou) { if (m.count(n)) return m[n] + cou; if (n == 1) return cou; if (n % 2 == 0) return collatz(n / 2, cou + 1); return collatz(3 * n + 1, cou + 1); } signed main() { int N; cin >> N; cout <<SUM1n(N)<<endl; }