結果
| 問題 |
No.1195 数え上げを愛したい(文字列編)
|
| コンテスト | |
| ユーザー |
kaage
|
| 提出日時 | 2020-08-07 02:22:06 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 6,301 bytes |
| コンパイル時間 | 1,407 ms |
| コンパイル使用メモリ | 129,372 KB |
| 実行使用メモリ | 6,824 KB |
| 最終ジャッジ日時 | 2024-10-11 10:14:34 |
| 合計ジャッジ時間 | 5,585 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 5 RE * 21 |
ソースコード
#line 2 "/Users/kaage/Desktop/ProgrammingWorkspace/library/other/template.hpp"
#define _CRT_SECURE_NO_WARNINGS
#pragma target("avx")
#pragma optimize("O3")
#pragma optimize("unroll-loops")
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cfloat>
#include <climits>
#include <cmath>
#include <complex>
#include <ctime>
#include <deque>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <list>
#include <map>
#include <memory>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <string.h>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#define rep(i,n) for(int i=0;i<(n);i++)
#define REP(i,n) for(int i=1;i<=(n);i++)
#define all(V) V.begin(),V.end()
typedef long long lint;
typedef unsigned long long ulint;
typedef std::pair<int, int> P;
typedef std::pair<lint, lint> LP;
constexpr int INF = INT_MAX/2;
constexpr lint LINF = LLONG_MAX/2;
constexpr double eps = DBL_EPSILON;
constexpr double PI=3.141592653589793238462643383279;
template<class T>
class prique :public std::priority_queue<T, std::vector<T>, std::greater<T>> {};
template <class T, class U>
inline bool chmax(T& lhs, const U& rhs) {
if (lhs < rhs) {
lhs = rhs;
return 1;
}
return 0;
}
template <class T, class U>
inline bool chmin(T& lhs, const U& rhs) {
if (lhs > rhs) {
lhs = rhs;
return 1;
}
return 0;
}
inline lint gcd(lint a, lint b) {
while (b) {
lint c = a;
a = b; b = c % b;
}
return a;
}
inline lint lcm(lint a, lint b) {
return a / gcd(a, b) * b;
}
bool isprime(lint n) {
if (n == 1)return false;
for (int i = 2; i * i <= n; i++) {
if (n % i == 0)return false;
}
return true;
}
template<typename T>
T mypow(T a, lint b) {
if (!b)return T(1);
if (b & 1)return mypow(a, b - 1) * a;
T memo = mypow(a, b >> 1);
return memo * memo;
}
lint modpow(lint a, lint b, lint m) {
if (!b)return 1;
if (b & 1)return modpow(a, b - 1, m) * a % m;
lint memo = modpow(a, b >> 1, m);
return memo * memo % m;
}
template<typename T>
void printArray(std::vector<T>& vec) {
rep(i, vec.size()){
std::cout << vec[i];
std::cout<<(i==(int)vec.size()-1?"\n":" ");
}
}
template<typename T>
void printArray(T l, T r) {
T rprev = r;
rprev--;
for (T i = l; i != rprev; i++) {
std::cout << *i << " ";
}
std::cout << *rprev << std::endl;
}
#line 3 "/Users/kaage/Desktop/ProgrammingWorkspace/library/algebraic/ModInt.hpp"
class ModInt {
lint value;
public:
static const unsigned int modulo;
ModInt() : value(0) {}
template<typename T>
ModInt(T value = 0) : value(value) {
if (value < 0)value = -(lint)(-value % modulo) + modulo;
this->value = value % modulo;
}
inline operator int()const { return value; }
inline ModInt& operator+=(const ModInt& x) {
value += x.value;
if (value >= modulo)value -= modulo;
return *this;
}
inline ModInt& operator++() {
if (value == modulo - 1)value = 0;
else value++;
return *this;
}
inline ModInt operator-()const {
return ModInt(0) -= *this;
}
inline ModInt& operator-=(const ModInt& x) {
value -= x.value;
if (value < 0)value += modulo;
return *this;
}
inline ModInt& operator--() {
if (value == 0)value = modulo - 1;
else value--;
return *this;
}
inline ModInt& operator*=(const ModInt& x) {
value = value * x.value % modulo;
return *this;
}
inline ModInt& operator/=(ModInt rhs) {
int exp = modulo - 2;
while (exp) {
if (exp & 1)*this *= rhs;
rhs *= rhs;
exp >>= 1;
}
return *this;
}
template<typename T> ModInt operator+(const T& rhs)const { return ModInt(*this) += rhs; }
template<typename T> ModInt& operator+=(const T& rhs) { return operator+=(ModInt(rhs)); }
template<typename T> ModInt operator-(const T& rhs)const { return ModInt(*this) -= rhs; }
template<typename T> ModInt& operator-=(const T& rhs) { return operator-=(ModInt(rhs)); }
template<typename T> ModInt operator*(const T& rhs)const { return ModInt(*this) *= rhs; }
template<typename T> ModInt& operator*=(const T& rhs) { return operator*=(ModInt(rhs)); }
template<typename T> ModInt operator/(const T& rhs)const { return ModInt(*this) /= rhs; }
template<typename T> ModInt& operator/=(const T& rhs) { return operator/=(ModInt(rhs)); }
};
std::istream& operator>>(std::istream& ist, ModInt& x) {
lint a;
ist >> a;
x = a;
return ist;
}
#line 4 "/Users/kaage/Desktop/ProgrammingWorkspace/library/algebraic/NumberTheoreticTransform.hpp"
//167772161,3
//469762049,3
//924844033,5
//998244353,3
//1012924417,5
//1224736769,3
const unsigned int ModInt::modulo=998244353;
class NumberTheoreticTransform{
private:
static void ntt(std::vector<ModInt>& func, const bool& inverse) {
int sz = func.size();
if (sz == 1)return;
std::vector<ModInt> veca, vecb;
rep(i, sz / 2) {
veca.push_back(func[2 * i]);
vecb.push_back(func[2 * i + 1]);
}
ntt(veca, inverse); ntt(vecb, inverse);
ModInt now = 1, zeta;
if(inverse)zeta=mypow(ModInt(3),ModInt::modulo-1-(ModInt::modulo-1)/sz);
else zeta=mypow(ModInt(3),(ModInt::modulo-1)/sz);
rep(i, sz) {
func[i] = veca[i % (sz / 2)] + now * vecb[i % (sz / 2)];
now *= zeta;
}
}
public:
template<typename T>
static std::vector<ModInt> multiply(std::vector<T> f, std::vector<T> g) {
if(f.size()<g.size())std::swap(f,g);
std::vector<ModInt> nf, ng;
int sz = 1;
while (sz < f.size() + g.size())sz *= 2;
nf.resize(sz); ng.resize(sz);
rep(i, f.size()) {
nf[i] = f[i];
if(i<g.size())ng[i] = g[i];
}
ntt(nf, false);
ntt(ng, false);
rep(i, sz)nf[i] *= ng[i];
ntt(nf, true);
rep(i,sz)nf[i]/=sz;
return nf;
}
};
#line 4 "main.cpp"
std::string s;
int a[26];
ModInt fact[20010],inv[20010];
int main(){
std::cin>>s;
rep(i,s.size())a[s[i]-'a']++;
std::sort(a,a+26);
fact[0]=1;
REP(i,s.size())fact[i]=fact[i-1]*i;
inv[s.size()]=ModInt(1)/fact[s.size()];
for(int i=s.size()-1;i>=0;i--)inv[i]=inv[i+1]*(i+1);
std::vector<ModInt> ans={1};
rep(i,26){
if(!a[i])continue;
std::vector<ModInt> vec(a[i]+1,1);
rep(j,ans.size())ans[j]*=inv[j];
rep(j,vec.size())vec[j]*=inv[j];
ans=NumberTheoreticTransform::multiply(ans,vec);
while(!ans.back())ans.pop_back();
rep(j,ans.size())ans[j]*=fact[j];
}
ModInt res=0;
REP(i,ans.size()-1)res+=ans[i];
std::cout<<res<<std::endl;
}
kaage