結果
問題 | No.658 テトラナッチ数列 Hard |
ユーザー | Kazun |
提出日時 | 2020-08-08 02:02:52 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 8,747 bytes |
コンパイル時間 | 158 ms |
コンパイル使用メモリ | 82,392 KB |
実行使用メモリ | 82,880 KB |
最終ジャッジ日時 | 2024-09-25 04:18:02 |
合計ジャッジ時間 | 14,886 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 45 ms
56,752 KB |
testcase_01 | AC | 46 ms
56,756 KB |
testcase_02 | AC | 78 ms
76,500 KB |
testcase_03 | AC | 122 ms
77,512 KB |
testcase_04 | AC | 1,348 ms
81,448 KB |
testcase_05 | AC | 1,295 ms
80,004 KB |
testcase_06 | AC | 1,555 ms
79,276 KB |
testcase_07 | AC | 1,686 ms
81,024 KB |
testcase_08 | TLE | - |
testcase_09 | TLE | - |
testcase_10 | TLE | - |
ソースコード
from copy import copy,deepcopy class Matrix_Error(Exception): pass class Matrix(): #入力 def __init__(self,M=[]): self.ele=M R=len(M) if R!=0: C=len(M[1]) else: C=0 self.row=R self.col=C self.size=(R,C) #出力 def __str__(self): T="" (r,c)=self.size for i in range(r): U="[" for j in range(c): U+=str(self.ele[i][j])+" " T+=U[:-1]+"]\n" return "["+T[:-1]+"]" #+,- def __pos__(self): return self def __neg__(self): return self.__scale__(-1) #加法 def __add__(A,B): if A.size!=B.size: raise Matrix_Error("2つの行列のサイズが異なります.({},{})".format(A.size,B.size)) M=A.ele N=B.ele L=[] for i in range(A.row): E=[] for j in range(A.col): E.append(M[i][j]+N[i][j]) L.append(E) return Matrix(L) #減法 def __sub__(A,B): return A+(-B) #乗法 def __mul__(A,B): if isinstance(B,Matrix): R=A.row C=B.col if A.col!=B.row: raise Matrix_Error("左側の列と右側の行が一致しません.({},{})".format(A.size,B.size)) G=A.col M=A.ele N=B.ele E=[] for i in range(R): F=[] for j in range(C): S=0 for k in range(G): S+=M[i][k]*N[k][j] F.append(S) E.append(F) return Matrix(E) elif isinstance(B,int): return A.__scale__(B) def __rmul__(A,B): if isinstance(B,int): return A*B def Inverse(M): if M.row!=M.col: raise Matrix_Error("正方行列ではありません.") R=M.row I=[[1*(i==j) for j in range(R)] for i in range(R)] G=M.Column_Union(Matrix(I)) G=G.Row_Reduce() A,B=[],[] for i in range(R): A.append(copy(G.ele[i][:R])) B.append(copy(G.ele[i][R:])) if A==I: return Matrix(B) else: raise Matrix_Error("正則ではありません.") #スカラー倍 def __scale__(A,r): M=A.ele L=[[r*M[i][j] for j in range(A.col)] for i in range(A.row)] return Matrix(L) #累乗 def __pow__(A,n): if A.row!=A.col: raise Matrix_Error("正方行列ではありません.") if n<0: return (A**(-n)).Inverse() R=Matrix([[1*(i==j) for j in range(A.row)] for i in range(A.row)]) D=A while n>0: if n%2==1: R*=D D*=D n=n>>1 return R #等号 def __eq__(A,B): if A.size!=B.size: return False for i in range(A.row): for j in range(A.col): if A.ele[i][j]!=B.ele[i][j]: return False return True #不等号 def __neq__(A,B): return not(A==B) #転置 def Transpose(self): self.col,self.row=self.row,self.col self.ele=list(map(list,zip(*self.ele))) #行基本変形 def Row_Reduce(M): (R,C)=M.size T=[] for i in range(R): U=[] for j in range(C): U.append(M.ele[i][j]) T.append(U) I=0 for J in range(C): if T[I][J]==0: for i in range(I+1,R): if T[i][J]!=0: T[i],T[I]=T[I],T[i] break if T[I][J]!=0: u=T[I][J] for j in range(C): T[I][j]/=u for i in range(R): if i!=I: v=T[i][J] for j in range(C): T[i][j]-=v*T[I][j] I+=1 if I==R: break return Matrix(T) #列基本変形 def Column_Reduce(M): (R,C)=M.size T=[] for i in range(R): U=[] for j in range(C): U.append(M.ele[i][j]) T.append(U) J=0 for I in range(R): if T[I][J]==0: for j in range(J+1,C): if T[I][j]!=0: for k in range(R): T[k][j],T[k][J]=T[k][J],T[k][j] break if T[I][J]!=0: u=T[I][J] for i in range(R): T[i][J]/=u for j in range(C): if j!=J: v=T[I][j] for i in range(R): T[i][j]-=v*T[i][J] J+=1 if J==C: break return Matrix(T) #行列の階数 def Rank(M,ep=None): M=M.Row_Reduce() (R,C)=M.size T=M.ele S=0 for i in range(R): f=False if ep==None: for j in range(C): if T[i][j]!=0: f=True else: for j in range(C): if abs(T[i][j])>=ep: f=True if f: S+=1 else: break return S #行の結合 def Row_Union(self,other): return Matrix(self.ele+other.ele) #列の結合 def Column_Union(self,other): E=[] for i in range(self.row): E.append(self.ele[i]+other.ele[i]) return Matrix(E) #=========================================== class Modulo(): def __init__(self,a,n): self.a=a%n self.n=n def __str__(self): return "{} (mod {})".format(self.a,self.n) #+,- def __pos__(self): return self def __neg__(self): return Modulo(-self.a,self.n) #等号,不等号 def __eq__(self,other): if isinstance(other,Modulo): return (self.a==other.a) and (self.n==other.n) elif isinstance(other,int): return (self-other).a==0 def __neq__(self,other): return not(self==other) #加法 def __add__(self,other): if isinstance(other,Modulo): if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.") return Modulo(self.a+other.a,self.n) elif isinstance(other,int): return Modulo(self.a+other,self.n) def __radd__(self,other): if isinstance(other,int): return Modulo(self.a+other,self.n) #減法 def __sub__(self,other): return self+(-other) def __rsub__(self,other): if isinstance(other,int): return -self+other #乗法 def __mul__(self,other): if isinstance(other,Modulo): if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.") return Modulo(self.a*other.a,self.n) elif isinstance(other,int): return Modulo(self.a*other,self.n) def __rmul__(self,other): if isinstance(other,int): return Modulo(self.a*other,self.n) #Modulo逆数 def Modulo_Inverse(self): x0, y0, x1, y1 = 1, 0, 0, 1 a,b=self.a,self.n while b != 0: q, a, b = a // b, b, a % b x0, x1 = x1, x0 - q * x1 y0, y1 = y1, y0 - q * y1 if a!=1: raise Modulo_Error("{}の逆数が存在しません".format(self)) else: return Modulo(x0,self.n) #除法 def __truediv__(self,other): return self*(other.Modulo_Inverse()) def __rtruediv__(self,other): return other*(self.Modulo_Inverse()) #累乗 def __pow__(self,m): u=abs(m) r=Modulo(1,self.n) while u>0: if u%2==1: r*=self self*=self u=u>>1 if m>=0: return r else: return r.Modulo_Inverse() #=========================================== Q=int(input()) X=[0]*Q a=Modulo(1,17) b=Modulo(0,17) M=Matrix( [[a,a,a,a],[a,b,b,b],[b,a,b,b],[b,b,a,b]] ) v=Matrix([[a],[b],[b],[b]]) for i in range(Q): N=int(input()) if N==1 or N==2 or N==3: X[i]=0 else: X[i]=((M**(N-4)*v).ele[0][0]).a print("\n".join(map(str,X)))