結果
| 問題 |
No.1153 ねこちゃんゲーム
|
| コンテスト | |
| ユーザー |
chocopuu
|
| 提出日時 | 2020-08-09 03:11:54 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,257 bytes |
| コンパイル時間 | 3,287 ms |
| コンパイル使用メモリ | 213,720 KB |
| 最終ジャッジ日時 | 2025-01-12 19:17:02 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 14 WA * 24 RE * 2 |
コンパイルメッセージ
main.cpp: In lambda function:
main.cpp:171:9: warning: control reaches end of non-void function [-Wreturn-type]
171 | };
| ^
ソースコード
#include "bits/stdc++.h"
using namespace std;
#define int long long
#define REP(i, n) for (int i = 0; i < (int)n; ++i)
#define RREP(i, n) for (int i = (int)n - 1; i >= 0; --i)
#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)
#define RFOR(i, s, n) for (int i = (int)n - 1; i >= s; --i)
#define ALL(a) a.begin(), a.end()
#define IN(a, x, b) (a <= x && x < b)
template<class T>istream&operator >>(istream&is,vector<T>&vec){for(T&x:vec)is>>x;return is;}
template<class T>inline void out(T t){cout << t << "\n";}
template<class T,class... Ts>inline void out(T t,Ts... ts){cout << t << " ";out(ts...);}
template<class T>inline bool CHMIN(T&a,T b){if(a > b){a = b;return true;}return false;}
template<class T>inline bool CHMAX(T&a,T b){if(a < b){a = b;return true;}return false;}
constexpr int INF = 1e18;
template <class T> class ReRooting {
public:
int NodeCount;
public:
std::vector<std::vector<int>> Adjacents;
std::vector<std::vector<int>> IndexForAdjacent;
std::vector<T> Res;
std::vector<std::vector<T>> DP;
T Identity;
std::function<T(T, T)> Operate;
std::function<T(T, int)> OperateNode;
public:
ReRooting(int nodeCount, std::vector<std::vector<int>> edges, T identity,
std::function<T(T, T)> operate,
std::function<T(T, int)> operateNode) {
NodeCount = nodeCount;
Identity = identity;
Operate = operate;
OperateNode = operateNode;
std::vector<std::vector<int>> adjacents(nodeCount);
std::vector<std::vector<int>> indexForAdjacents(nodeCount);
for (int i = 0; i < edges.size(); i++) {
auto &edge = edges[i];
indexForAdjacents[edge[0]].push_back(adjacents[edge[1]].size());
indexForAdjacents[edge[1]].push_back(adjacents[edge[0]].size());
adjacents[edge[0]].push_back(edge[1]);
adjacents[edge[1]].push_back(edge[0]);
}
Adjacents = std::vector<std::vector<int>>(nodeCount);
IndexForAdjacent = std::vector<std::vector<int>>(nodeCount);
for (int i = 0; i < nodeCount; i++) {
Adjacents[i] = adjacents[i];
IndexForAdjacent[i] = indexForAdjacents[i];
}
DP = std::vector<std::vector<T>>(Adjacents.size());
Res = std::vector<T>(Adjacents.size());
for (int i = 0; i < Adjacents.size(); i++)
DP[i] = std::vector<T>(Adjacents[i].size());
if (NodeCount > 1)
Initialize();
else if (NodeCount == 1)
Res[0] = OperateNode(Identity, 0);
}
T Query(int node) { return Res[node]; }
private:
void Initialize() {
std::vector<int> parents(NodeCount);
std::vector<int> order(NodeCount);
#pragma region InitOrderedTree
int index = 0;
std::stack<int> stack;
stack.push(0);
parents[0] = -1;
while (stack.size() > 0) {
auto node = stack.top();
stack.pop();
order[index++] = node;
for (int i = 0; i < Adjacents[node].size(); i++) {
auto adjacent = Adjacents[node][i];
if (adjacent == parents[node])
continue;
stack.push(adjacent);
parents[adjacent] = node;
}
}
#pragma endregion
#pragma region fromLeaf
for (int i = order.size() - 1; i >= 1; i--) {
auto node = order[i];
auto parent = parents[node];
T accum = Identity;
int parentIndex = -1;
for (int j = 0; j < Adjacents[node].size(); j++) {
if (Adjacents[node][j] == parent) {
parentIndex = j;
continue;
}
accum = Operate(accum, DP[node][j]);
}
DP[parent][IndexForAdjacent[node][parentIndex]] =
OperateNode(accum, node);
}
#pragma endregion
#pragma region toLeaf
for (int i = 0; i < order.size(); i++) {
auto node = order[i];
T accum = Identity;
std::vector<T> accumsFromTail(Adjacents[node].size());
accumsFromTail[accumsFromTail.size() - 1] = Identity;
for (int j = accumsFromTail.size() - 1; j >= 1; j--)
accumsFromTail[j - 1] = Operate(DP[node][j], accumsFromTail[j]);
for (int j = 0; j < accumsFromTail.size(); j++) {
DP[Adjacents[node][j]][IndexForAdjacent[node][j]] =
OperateNode(Operate(accum, accumsFromTail[j]), node);
accum = Operate(accum, DP[node][j]);
}
Res[node] = OperateNode(accum, node);
}
#pragma endregion
}
};
/*
REP(i, N - 1) {
int a, b;
cin >> a >> b;
--a; --b;
g.push_back({a, b});
}
この形式で受け取る!
*/
signed main(){
int N, M;
cin >> N >> M;
vector<int>a(M);
REP(i, M) {
cin >> a[i];
--a[i];
}
vector<vector<int>>g;
vector<vector<int>>edges(N);
REP(i, N - 1) {
int a, b;
cin >> a >> b;
--a; --b;
g.push_back({a, b});
edges[a].emplace_back(b);
edges[b].emplace_back(a);
}
auto merge = [](int a, int b) -> int {
return a | b;
};
auto f = [](int a, int b) -> int {
REP(i, 20) {
if(!(a & (1ll << i))) return 1ll << i;
}
};
ReRooting<int> rr(N, g, 0ll, merge, f);
int XOR = 0;
vector<int>grundy(N);
REP(i, N) {
int state = rr.Query(i);
REP(j, 20) {
if(state & (1ll << j)) grundy[i] = j;
}
}
REP(i, M) {
XOR ^= grundy[a[i]];
}
vector<int>cnt(N, -1);
REP(i, M) cnt[a[i]] = i;
if(XOR) {
REP(i, N) {
if(cnt[i] == -1) continue;
if(XOR > grundy[i]) continue;
int count = 0;
for(auto e: rr.DP[i]) {
int x = e;
REP(j, 20) {
if(x & (1ll << j)) {
x = j;
break;
}
}
int next_XOR = XOR ^ grundy[i] ^ x;
if(next_XOR == 0) {
out(cnt[i] + 1, g[i][count] + 1);
return 0;
}
++count;
}
}
} else {
out(-1, -1);
}
}
chocopuu