結果
問題 | No.718 行列のできるフィボナッチ数列道場 (1) |
ユーザー | kissshot7 |
提出日時 | 2020-08-10 16:59:10 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 4 ms / 2,000 ms |
コード長 | 3,576 bytes |
コンパイル時間 | 1,940 ms |
コンパイル使用メモリ | 176,036 KB |
実行使用メモリ | 7,680 KB |
最終ジャッジ日時 | 2024-10-07 23:42:42 |
合計ジャッジ時間 | 3,037 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
7,552 KB |
testcase_01 | AC | 4 ms
7,620 KB |
testcase_02 | AC | 4 ms
7,488 KB |
testcase_03 | AC | 4 ms
7,552 KB |
testcase_04 | AC | 4 ms
7,424 KB |
testcase_05 | AC | 4 ms
7,424 KB |
testcase_06 | AC | 4 ms
7,552 KB |
testcase_07 | AC | 4 ms
7,552 KB |
testcase_08 | AC | 4 ms
7,424 KB |
testcase_09 | AC | 4 ms
7,488 KB |
testcase_10 | AC | 4 ms
7,680 KB |
testcase_11 | AC | 4 ms
7,424 KB |
testcase_12 | AC | 4 ms
7,492 KB |
testcase_13 | AC | 4 ms
7,552 KB |
testcase_14 | AC | 4 ms
7,552 KB |
testcase_15 | AC | 4 ms
7,552 KB |
testcase_16 | AC | 4 ms
7,424 KB |
testcase_17 | AC | 4 ms
7,552 KB |
testcase_18 | AC | 4 ms
7,424 KB |
testcase_19 | AC | 4 ms
7,424 KB |
testcase_20 | AC | 4 ms
7,492 KB |
testcase_21 | AC | 4 ms
7,552 KB |
testcase_22 | AC | 4 ms
7,424 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; const ll mod = 1000000007; const ll INF = mod * mod; const int INF_N = 1e+9; typedef pair<int, int> P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i<n;i++) #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair<ll, ll> LP; typedef long double ld; typedef pair<ld, ld> LDP; const ld eps = 1e-12; const ld pi = acos(-1.0); //typedef vector<vector<ll>> mat; typedef vector<int> vec; //繰り返し二乗法 ll mod_pow(ll a, ll n, ll m) { ll res = 1; while (n) { if (n & 1)res = res * a%m; a = a * a%m; n >>= 1; } return res; } struct modint { ll n; modint() :n(0) { ; } modint(ll m) :n(m) { if (n >= mod)n %= mod; else if (n < 0)n = (n%mod + mod) % mod; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } modint operator+=(modint &a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; } modint operator-=(modint &a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; } modint operator*=(modint &a, modint b) { a.n = ((ll)a.n*b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, int n) { if (n == 0)return modint(1); modint res = (a*a) ^ (n / 2); if (n % 2)res = res * a; return res; } //逆元(Eucledean algorithm) ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p%a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } const int max_n = 1 << 18; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } using mP = pair<modint, modint>; int dx[4] = { 0,1,0,-1 }; int dy[4] = { 1,0,-1,0 }; struct Matrix { vector<vector<long long> > val; Matrix(int n, int m, long long x = 0) : val(n, vector<long long>(m, x)) {} void init(int n, int m, long long x = 0) { val.assign(n, vector<long long>(m, x)); } size_t size() const { return val.size(); } inline vector<long long>& operator [] (int i) { return val[i]; } }; Matrix operator * (Matrix A, Matrix B) { Matrix R(A.size(), B[0].size()); for (int i = 0; i < A.size(); ++i) for (int j = 0; j < B[0].size(); ++j) for (int k = 0; k < B.size(); ++k) R[i][j] = (R[i][j] + A[i][k] * B[k][j] % mod) % mod; return R; } Matrix modpow(Matrix A, long long n) { Matrix R(A.size(), A.size()); for (int i = 0; i < A.size(); ++i) R[i][i] = 1; while (n > 0) { if (n & 1) R = R * A; A = A * A; n >>= 1; } return R; } void solve() { ll n; cin >> n; Matrix m(2, 2); m[0][0] = m[0][1] = m[1][0] = 1; m = modpow(m, n); cout << modint(m[0][0])*modint(m[1][0]) << endl; } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(10); //init_f(); //init(); //int t; cin >> t; rep(i, t)solve(); solve(); // stop return 0; }