結果

問題 No.856 増える演算
ユーザー kimiyuki
提出日時 2020-08-11 19:48:41
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 8,418 bytes
コンパイル時間 3,351 ms
コンパイル使用メモリ 206,240 KB
最終ジャッジ日時 2025-01-12 20:24:28
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 3 WA * 42 RE * 3 TLE * 32
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "main.cpp"
#include <bits/stdc++.h>
#line 2 "/home/user/Library/utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 4 "/home/user/Library/modulus/modpow.hpp"
inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {
assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);
uint_fast64_t y = 1;
for (; k; k >>= 1) {
if (k & 1) (y *= x) %= MOD;
(x *= x) %= MOD;
}
assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);
return y;
}
#line 5 "/home/user/Library/modulus/modinv.hpp"
inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {
assert (0 <= value and value < MOD);
if (value == 0) return -1;
int64_t a = value, b = MOD;
int64_t x = 0, y = 1;
for (int64_t u = 1, v = 0; a; ) {
int64_t q = b / a;
x -= q * u; std::swap(x, u);
y -= q * v; std::swap(y, v);
b -= q * a; std::swap(b, a);
}
if (not (value * x + MOD * y == b and b == 1)) return -1;
if (x < 0) x += MOD;
assert (0 <= x and x < MOD);
return x;
}
inline int32_t modinv(int32_t x, int32_t MOD) {
int32_t y = modinv_nocheck(x, MOD);
assert (y != -1);
return y;
}
#line 6 "/home/user/Library/modulus/mint.hpp"
/**
* @brief quotient ring / $\mathbb{Z}/n\mathbb{Z}$
*/
template <int32_t MOD>
struct mint {
int32_t value;
mint() : value() {}
mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}
mint(int32_t value_, std::nullptr_t) : value(value_) {}
explicit operator bool() const { return value; }
inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }
inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }
inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }
inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }
inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }
inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }
inline bool operator == (mint<MOD> other) const { return value == other.value; }
inline bool operator != (mint<MOD> other) const { return value != other.value; }
inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }
inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }
inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }
inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }
};
template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }
template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }
template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }
template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }
template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }
template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }
#line 5 "/home/user/Library/number/karatsuba.hpp"
/**
* @brief Karatsuba method ($O(n^{\log_2 3})$)
*/
template <class CommutativeRing>
std::vector<CommutativeRing> karatsuba_convolution(const std::vector<CommutativeRing> & x, const std::vector<CommutativeRing> & y) {
int n = x.size();
int m = y.size();
if ((int64_t)n * m <= 100) {
std::vector<CommutativeRing> z(n + m - 1);
REP (i, n) REP (j, m) {
z[i + j] += x[i] * y[j];
}
return z;
}
int half = (std::max(n, m) + 1) / 2;
std::vector<CommutativeRing> x0(x.begin(), x.begin() + std::min(n, half));
std::vector<CommutativeRing> y0(y.begin(), y.begin() + std::min(m, half));
std::vector<CommutativeRing> z0 = karatsuba_convolution(x0, y0);
std::vector<CommutativeRing> x1(x.begin() + std::min(n, half), x.end());
std::vector<CommutativeRing> y1(y.begin() + std::min(m, half), y.end());
std::vector<CommutativeRing> z2 = karatsuba_convolution(x1, y1);
assert (x1.size() <= x0.size());
std::vector<CommutativeRing> dx = x0;
REP (i, x1.size()) dx[i] -= x1[i];
assert (y1.size() <= y0.size());
std::vector<CommutativeRing> dy = y0;
REP (i, y1.size()) dy[i] -= y1[i];
std::vector<CommutativeRing> dz = karatsuba_convolution(dx, dy);
std::vector<CommutativeRing> z(n + m - 1);
REP (i, z0.size()) {
z[i] += z0[i];
if (half + i < (int)z.size()) z[half + i] += z0[i];
}
REP (i, dz.size()) {
if (half + i < (int)z.size()) z[half + i] -= dz[i];
}
REP (i, z2.size()) {
z[half + i] += z2[i];
if (2 * half + i < (int)z.size()) z[2 * half + i] += z2[i];
}
return z;
}
#line 5 "main.cpp"
using namespace std;
template <class CommutativeRing>
std::vector<CommutativeRing> karatsuba_special_convolution(const std::vector<CommutativeRing> & x) {
int n = x.size();
if ((int64_t)n * n <= 100) {
std::vector<CommutativeRing> z(2 * n - 1);
REP (i, n) REP3 (j, i + 1, n) {
z[i + j] += x[i] * x[j];
}
return z;
}
int half = (n + 1) / 2;
std::vector<CommutativeRing> x0(x.begin(), x.begin() + std::min(n, half));
std::vector<CommutativeRing> x1(x.begin() + std::min(n, half), x.end());
std::vector<CommutativeRing> z0 = karatsuba_special_convolution(x0);
std::vector<CommutativeRing> z1 = karatsuba_convolution(x0, x1);
std::vector<CommutativeRing> z2 = karatsuba_special_convolution(x1);
std::vector<CommutativeRing> z(2 * n - 1);
REP (i, z0.size()) {
z[i] += z0[i];
if (half + i < (int)z.size()) z[half + i] += z0[i];
}
REP (i, z1.size()) {
if (half + i < (int)z.size()) z[half + i] += z1[i];
}
REP (i, z2.size()) {
if (2 * half + i < (int)z.size()) z[2 * half + i] += z2[i];
}
return z;
}
constexpr int64_t MOD = 1000000007;
// the commutative ring (F, *, +) for the finite field (F, +, *)
struct cring_t {
mint<MOD> value;
cring_t() : value(1) {}
};
cring_t & operator += (cring_t & a, cring_t b) {
a.value *= b.value; return a;
}
cring_t & operator -= (cring_t & a, cring_t b) {
a.value /= b.value; return a;
}
cring_t & operator *= (cring_t & a, cring_t b) {
a.value += b.value; return a;
}
cring_t operator + (cring_t a, cring_t b) {
return a += b;
}
cring_t operator - (cring_t a, cring_t b) {
return a -= b;
}
cring_t operator * (cring_t a, cring_t b) {
return a *= b;
}
mint<MOD> solve(int n, const vector<int64_t> &a) {
mint<MOD> x = 1;
{
vector<cring_t> b(n);
REP (i, n) {
b[i].value = a[i];
}
auto c = karatsuba_special_convolution<cring_t>(b);
for (auto c_i : c) {
x *= c_i.value;
}
}
mint<MOD> y = 1;
{
int64_t sum_a_j = 0;
REP_R (i, n) {
y *= mint<MOD>(a[i]).pow(sum_a_j);
sum_a_j += a[i];
}
}
mint<MOD> z = 0;
{
double log_z = INFINITY;
int64_t a_j = a[n - 1];
REP_R (i, n - 1) {
double log_a_i_a_j = log(a[i] + a_j) + a_j * log(a[i]);
if (log_a_i_a_j < log_z) {
log_z = log_a_i_a_j;
z = mint<MOD>(a[i] + a_j) * mint<MOD>(a[i]).pow(a_j);
}
a_j = min(a[i], a_j);
}
}
return x * y / z;
}
int main() {
int n; cin >> n;
vector<int64_t> a(n);
REP (i, n) {
cin >> a[i];
}
auto ans = solve(n, a);
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0