結果
問題 | No.856 増える演算 |
ユーザー | kimiyuki |
提出日時 | 2020-08-11 20:42:42 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 118 ms / 3,153 ms |
コード長 | 7,807 bytes |
コンパイル時間 | 2,276 ms |
コンパイル使用メモリ | 214,664 KB |
実行使用メモリ | 23,036 KB |
最終ジャッジ日時 | 2024-10-09 11:42:51 |
合計ジャッジ時間 | 7,466 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,820 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,820 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 2 ms
6,816 KB |
testcase_15 | AC | 2 ms
6,820 KB |
testcase_16 | AC | 2 ms
6,820 KB |
testcase_17 | AC | 2 ms
6,816 KB |
testcase_18 | AC | 2 ms
6,816 KB |
testcase_19 | AC | 3 ms
6,816 KB |
testcase_20 | AC | 2 ms
6,820 KB |
testcase_21 | AC | 2 ms
6,820 KB |
testcase_22 | AC | 2 ms
6,816 KB |
testcase_23 | AC | 3 ms
6,820 KB |
testcase_24 | AC | 5 ms
6,820 KB |
testcase_25 | AC | 2 ms
6,816 KB |
testcase_26 | AC | 2 ms
6,816 KB |
testcase_27 | AC | 2 ms
6,820 KB |
testcase_28 | AC | 4 ms
6,816 KB |
testcase_29 | AC | 3 ms
6,816 KB |
testcase_30 | AC | 3 ms
6,820 KB |
testcase_31 | AC | 2 ms
6,816 KB |
testcase_32 | AC | 4 ms
6,820 KB |
testcase_33 | AC | 7 ms
6,824 KB |
testcase_34 | AC | 12 ms
6,816 KB |
testcase_35 | AC | 8 ms
6,816 KB |
testcase_36 | AC | 11 ms
6,816 KB |
testcase_37 | AC | 10 ms
6,820 KB |
testcase_38 | AC | 3 ms
6,824 KB |
testcase_39 | AC | 4 ms
6,816 KB |
testcase_40 | AC | 6 ms
6,820 KB |
testcase_41 | AC | 6 ms
6,816 KB |
testcase_42 | AC | 13 ms
6,816 KB |
testcase_43 | AC | 6 ms
6,816 KB |
testcase_44 | AC | 3 ms
6,820 KB |
testcase_45 | AC | 3 ms
6,816 KB |
testcase_46 | AC | 6 ms
6,820 KB |
testcase_47 | AC | 5 ms
6,820 KB |
testcase_48 | AC | 9 ms
6,820 KB |
testcase_49 | AC | 7 ms
6,816 KB |
testcase_50 | AC | 9 ms
6,816 KB |
testcase_51 | AC | 11 ms
6,820 KB |
testcase_52 | AC | 13 ms
6,820 KB |
testcase_53 | AC | 92 ms
22,752 KB |
testcase_54 | AC | 78 ms
22,612 KB |
testcase_55 | AC | 91 ms
22,676 KB |
testcase_56 | AC | 71 ms
22,532 KB |
testcase_57 | AC | 89 ms
22,728 KB |
testcase_58 | AC | 85 ms
22,684 KB |
testcase_59 | AC | 106 ms
22,780 KB |
testcase_60 | AC | 81 ms
22,608 KB |
testcase_61 | AC | 108 ms
22,808 KB |
testcase_62 | AC | 105 ms
22,780 KB |
testcase_63 | AC | 61 ms
22,460 KB |
testcase_64 | AC | 100 ms
22,708 KB |
testcase_65 | AC | 74 ms
22,612 KB |
testcase_66 | AC | 81 ms
22,668 KB |
testcase_67 | AC | 86 ms
22,648 KB |
testcase_68 | AC | 100 ms
22,800 KB |
testcase_69 | AC | 99 ms
22,804 KB |
testcase_70 | AC | 112 ms
22,824 KB |
testcase_71 | AC | 103 ms
22,952 KB |
testcase_72 | AC | 96 ms
22,784 KB |
testcase_73 | AC | 116 ms
22,868 KB |
testcase_74 | AC | 116 ms
22,884 KB |
testcase_75 | AC | 116 ms
22,864 KB |
testcase_76 | AC | 118 ms
22,896 KB |
testcase_77 | AC | 116 ms
22,896 KB |
testcase_78 | AC | 114 ms
23,036 KB |
testcase_79 | AC | 117 ms
23,020 KB |
testcase_80 | AC | 115 ms
22,864 KB |
testcase_81 | AC | 115 ms
22,932 KB |
testcase_82 | AC | 104 ms
22,940 KB |
ソースコード
#line 1 "main.cpp" #include <bits/stdc++.h> #line 2 "/home/user/Library/utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 4 "/home/user/Library/modulus/modpow.hpp" inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) { assert (/* 0 <= x and */ x < (uint_fast64_t)MOD); uint_fast64_t y = 1; for (; k; k >>= 1) { if (k & 1) (y *= x) %= MOD; (x *= x) %= MOD; } assert (/* 0 <= y and */ y < (uint_fast64_t)MOD); return y; } #line 5 "/home/user/Library/modulus/modinv.hpp" inline int32_t modinv_nocheck(int32_t value, int32_t MOD) { assert (0 <= value and value < MOD); if (value == 0) return -1; int64_t a = value, b = MOD; int64_t x = 0, y = 1; for (int64_t u = 1, v = 0; a; ) { int64_t q = b / a; x -= q * u; std::swap(x, u); y -= q * v; std::swap(y, v); b -= q * a; std::swap(b, a); } if (not (value * x + MOD * y == b and b == 1)) return -1; if (x < 0) x += MOD; assert (0 <= x and x < MOD); return x; } inline int32_t modinv(int32_t x, int32_t MOD) { int32_t y = modinv_nocheck(x, MOD); assert (y != -1); return y; } #line 6 "/home/user/Library/modulus/mint.hpp" /** * @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$ */ template <int32_t MOD> struct mint { int32_t value; mint() : value() {} mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {} mint(int32_t value_, std::nullptr_t) : value(value_) {} explicit operator bool() const { return value; } inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; } inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; } inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; } inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; } inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; } inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; } inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); } inline bool operator == (mint<MOD> other) const { return value == other.value; } inline bool operator != (mint<MOD> other) const { return value != other.value; } inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); } inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); } inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); } inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); } }; template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; } template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; } template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; } template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; } template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; } template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; } #line 8 "/home/user/Library/number/fast_fourier_transformation.hpp" /** * @note O(N log N) * @note radix-2, decimation-in-frequency, Cooley-Tukey * @note cache std::polar (~ 2x faster) */ template <typename R> void fft_inplace(std::vector<std::complex<R> > & f, bool inverse) { const int n = f.size(); assert (n == pow(2, log2(n))); // cache static std::vector<std::complex<R> > cache; if ((int)cache.size() != n / 2) { const R theta = 2 * M_PI / n; cache.resize(n / 2); REP (irev, n / 2) { cache[irev] = std::polar<R>(1, irev * theta); } } // bit reverse int i = 0; REP3 (j, 1, n - 1) { for (int k = n >> 1; (i ^= k) < k; k >>= 1); if (j < i) swap(f[i], f[j]); } // divide and conquer for (int mh = 1; (mh << 1) <= n; mh <<= 1) { int irev = 0; for (int i = 0; i < n; i += (mh << 1)) { auto w = (inverse ? conj(cache[irev]) : cache[irev]); for (int k = n >> 2; (irev ^= k) < k; k >>= 1); REP3 (j, i, mh + i) { int k = j + mh; std::complex<R> x = f[j] - f[k]; f[j] += f[k]; f[k] = w * x; } } } } template <typename R> std::vector<std::complex<R> > fft(std::vector<std::complex<R> > f) { f.resize(pow(2, ceil(log2(f.size())))); fft_inplace(f, false); return f; } template <typename R> std::vector<std::complex<R> > ifft(std::vector<std::complex<R> > f) { f.resize(pow(2, ceil(log2(f.size())))); fft_inplace(f, true); return f; } /** * @brief FFT convolution * @note O(N log N) * @note (f \ast g)(i) = \sum_{0 \le j \lt i + 1} f(j) g(i - j) */ template <typename T, typename R = double> std::vector<T> fft_convolution(std::vector<T> const & a, std::vector<T> const & b) { assert (not a.empty() and not b.empty()); int m = a.size() + b.size() - 1; int n = pow(2, ceil(log2(m))); std::vector<std::complex<R> > x(n), y(n); copy(ALL(a), x.begin()); copy(ALL(b), y.begin()); fft_inplace(x, false); fft_inplace(y, false); std::vector<std::complex<R> > z(n); REP (i, n) { z[i] = x[i] * y[i]; } fft_inplace(z, true); std::vector<T> c(m); REP (i, m) { c[i] = std::is_integral<T>::value ? round(z[i].real() / n) : z[i].real() / n; } return c; } #line 5 "main.cpp" using namespace std; constexpr int64_t MOD = 1000000007; mint<MOD> solve(int n, const vector<int> &a) { // \prod_i \prod_{j > i} (A_i + A_j) mint<MOD> x = 1; { int max_a = *max_element(ALL(a)); vector<long double> cnt(max_a + 1); for (int a_i : a) { ++ cnt[a_i]; } cnt = fft_convolution(cnt, cnt); for (int a_i : a) { -- cnt[2 * a_i]; } REP (i, cnt.size()) { cnt[i] /= 2; } REP (i, cnt.size()) { int64_t k = round(cnt[i]); assert (abs(cnt[i] - k) <= 1e-6); x *= mint<MOD>(i).pow(k); } } // \prod_i \prod_{j > i} A_i^{A_j} mint<MOD> y = 1; { int64_t sum_a_j = 0; REP_R (i, n) { y *= mint<MOD>(a[i]).pow(sum_a_j); sum_a_j += a[i]; } } // \min_i \mimn_{j > i} (A_i + A_j)A_i^{A_j} mint<MOD> z = 0; { double log_z = INFINITY; int64_t a_j = a[n - 1]; REP_R (i, n - 1) { double log_a_i_a_j = log(a[i] + a_j) + a_j * log(a[i]); if (log_a_i_a_j < log_z) { log_z = log_a_i_a_j; z = mint<MOD>(a[i] + a_j) * mint<MOD>(a[i]).pow(a_j); } a_j = min<int64_t>(a[i], a_j); } } return x * y / z; } int main() { int n; cin >> n; vector<int> a(n); REP (i, n) { cin >> a[i]; } auto ans = solve(n, a); cout << ans << endl; return 0; }