結果

問題 No.1094 木登り / Climbing tree
ユーザー kuhakukuhaku
提出日時 2020-08-11 21:00:11
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,706 ms / 2,000 ms
コード長 5,267 bytes
コンパイル時間 3,036 ms
コンパイル使用メモリ 218,932 KB
実行使用メモリ 85,984 KB
最終ジャッジ日時 2024-11-08 07:02:26
合計ジャッジ時間 38,358 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1,593 ms
73,088 KB
testcase_02 AC 426 ms
85,984 KB
testcase_03 AC 228 ms
6,528 KB
testcase_04 AC 442 ms
32,896 KB
testcase_05 AC 863 ms
63,744 KB
testcase_06 AC 675 ms
24,192 KB
testcase_07 AC 1,653 ms
73,088 KB
testcase_08 AC 1,624 ms
73,088 KB
testcase_09 AC 1,612 ms
72,960 KB
testcase_10 AC 1,668 ms
73,088 KB
testcase_11 AC 1,706 ms
72,960 KB
testcase_12 AC 1,638 ms
73,088 KB
testcase_13 AC 1,658 ms
72,960 KB
testcase_14 AC 1,634 ms
72,960 KB
testcase_15 AC 626 ms
20,556 KB
testcase_16 AC 975 ms
66,136 KB
testcase_17 AC 799 ms
39,988 KB
testcase_18 AC 710 ms
30,780 KB
testcase_19 AC 900 ms
54,900 KB
testcase_20 AC 1,695 ms
72,960 KB
testcase_21 AC 816 ms
42,676 KB
testcase_22 AC 1,660 ms
72,960 KB
testcase_23 AC 1,640 ms
72,960 KB
testcase_24 AC 1,620 ms
72,960 KB
testcase_25 AC 1,629 ms
72,960 KB
testcase_26 AC 1,610 ms
72,960 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using P = pair<ll, ll>;
using Pld = pair<ld, ld>;
using Vec = vector<ll>;
using VecP = vector<P>;
using VecB = vector<bool>;
using VecC = vector<char>;
using VecD = vector<ld>;
using VecS = vector<string>;
template <typename T>
using Vec1 = vector<T>;
template <typename T>
using Vec2 = vector<Vec1<T> >;
#define REP(i, m, n) for(ll i = (m); i < (n); ++i)
#define REPN(i, m, n) for(ll i = (m); i <= (n); ++i)
#define REPR(i, m, n) for(ll i = (m)-1; i >= (n); --i)
#define REPNR(i, m, n) for(ll i = (m); i >= (n); --i)
#define rep(i, n) REP(i, 0, n)
#define repn(i, n) REPN(i, 1, n)
#define repr(i, n) REPR(i, n, 0)
#define repnr(i, n) REPNR(i, n, 1)
#define all(s) (s).begin(), (s).end()
#define pb push_back
#define fs first
#define sc second
template <typename T>
bool chmax(T &a, const T b){if(a < b){a = b; return true;} return false;}
template <typename T>
bool chmin(T &a, const T b){if(a > b){a = b; return true;} return false;}
template <typename T>
ll pow2(const T n){return (1LL << n);}
template <typename T>
void cosp(const T n){cout << n << ' ';}
void co(void){cout << '\n';}
template <typename T>
void co(const T n){cout << n << '\n';}
template <typename T1, typename T2>
void co(pair<T1, T2> p){cout << p.fs << ' ' << p.sc << '\n';}
template <typename T>
void co(const Vec1<T> &v){for(T i : v) cosp(i); co();}
template <typename T>
void co(initializer_list<T> v){for(T i : v) cosp(i); co();}
void ce(void){cerr << '\n';}
template <typename T>
void ce(const T n){cerr << n << '\n';}
template <typename T>
void cesp(const T n){cerr << n << ' ';}
template <typename T>
void ce(initializer_list<T> v){for(T i : v) cesp(i); ce();}
void sonic(){ios::sync_with_stdio(false); cin.tie(0);}
void setp(const ll n){cout << fixed << setprecision(n);}
constexpr int INF = 1e9+1;
constexpr ll LINF = 1e18+1;
constexpr ll MOD = 1e9+7;
// constexpr ll MOD = 998244353;
constexpr ld EPS = 1e-11;
const double PI = acos(-1);

template <int mod>
struct ModInt {
	int x;

	ModInt() : x(0) {}

	ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

	ModInt &operator+=(const ModInt &p) {
		if((x += p.x) >= mod) x -= mod;
		return *this;
	}

	ModInt &operator-=(const ModInt &p) {
		if((x += mod - p.x) >= mod) x -= mod;
		return *this;
	}

	ModInt &operator*=(const ModInt &p) {
		x = (int) (1LL * x * p.x % mod);
		return *this;
	}

	ModInt &operator/=(const ModInt &p) {
		*this *= p.inverse();
		return *this;
	}

	ModInt operator-() const { return ModInt(-x); }

	ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

	ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

	ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

	ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

	bool operator==(const ModInt &p) const { return x == p.x; }

	bool operator!=(const ModInt &p) const { return x != p.x; }

	ModInt inverse() const {
		int a = x, b = mod, u = 1, v = 0, t;
		while(b > 0) {
			t = a / b;
			swap(a -= t * b, b);
			swap(u -= t * v, v);
		}
		return ModInt(u);
	}

	ModInt pow(int64_t n) const {
		ModInt res(1), mul(x);
		while(n > 0) {
			if(n & 1) res *= mul;
			mul *= mul;
			n >>= 1;
		}
		return res;
	}

	friend ostream &operator<<(ostream &os, const ModInt &p) {
		return os << p.x;
	}

	friend istream &operator>>(istream &is, ModInt &a) {
		int64_t t;
		is >> t;
		a = ModInt< mod >(t);
		return (is);
	}

	static int get_mod() { return mod; }
};
using Mint = ModInt<MOD>;

Vec2<ll> tree;

struct LCA{
	ll V, logV;
	Vec depth;
	Vec2<ll> parent;
	
	LCA(ll v){
		V = v;
		logV = 0;
		while (v > pow2(logV)) logV++;
		depth = Vec(V);
		parent = Vec2<ll>(logV, Vec(V));
		init(0, -1, 0);
		build();
	}
	
	//init(0, -1, 0);
	void init(ll v, ll par, ll d) {
		depth[v] = d;
		parent[0][v] = par;
		for(ll i : tree[v]){
			if (i == par) continue;
			init(i, v, d+1);
		}
	}
	
	void build(){
		rep(k, logV-1){
			rep(v, V){
				if (parent[k][v] < 0) parent[k+1][v] = -1;
				else parent[k+1][v] = parent[k][parent[k][v]];
			}
		}
	}
	
	int lca(ll u, ll v){
		if(depth[u] > depth[v])swap(u, v);
		rep(k, logV){
			if((depth[v]-depth[u]) >> k & 1) v = parent[k][v];
		}
		if (u == v) return u;
		
		repr(k, logV){
			if (parent[k][u] != parent[k][v]) {
				u = parent[k][u];
				v = parent[k][v];
			}
		}
		return parent[0][u];
	}
};

Vec cost;
map<P, ll> mp;

void dfs(ll node, ll par) {
	if (par == -1) cost[node] = 0;
	else cost[node] = cost[par] + mp[{node, par}];

	for (ll i : tree[node]) {
		if(i != par) dfs(i, node);
	}
}

int main(void){
	ll n;
	cin >> n;
	tree.resize(n);
	cost.resize(n);
	rep(i, n - 1) {
		ll a, b, c;
		cin >> a >> b >> c;
		--a, --b;
		mp[{a, b}] = c;
		mp[{b, a}] = c;
		tree[a].push_back(b);
		tree[b].push_back(a);
	}
	LCA lca(n);

	dfs(0, -1);

	ll q;
	cin >> q;
	while (q--) {
		ll s, t;
		cin >> s >> t;
		--s, --t;
		ll r = lca.lca(s, t);
		co(cost[s] - cost[r] + cost[t] - cost[r]);
	}

	return 0;
}
0