結果
問題 | No.997 Jumping Kangaroo |
ユーザー |
![]() |
提出日時 | 2020-08-12 07:17:31 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 3,479 bytes |
コンパイル時間 | 1,725 ms |
コンパイル使用メモリ | 130,672 KB |
最終ジャッジ日時 | 2025-01-12 21:08:13 |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 25 |
ソースコード
#include <iostream> #include <string> #include <vector> #include <queue> #include <deque> #include <algorithm> #include <set> #include <map> #include <bitset> #include <cmath> #include <functional> #include <iomanip> #define vll vector<ll> #define vvvl vector<vvl> #define vvl vector<vector<ll>> #define VV(a, b, c, d) vector<vector<d>>(a, vector<d>(b, c)) #define VVV(a, b, c, d) vector<vvl>(a, vvl(b, vll (c, d))); #define re(c, b) for(ll c=0;c<b;c++) #define all(obj) (obj).begin(), (obj).end() typedef long long int ll; typedef long double ld; using namespace std; ll P = 1000000007; // matrix<集合> (集合, 加法における単位元, 加算, 乗算) template<typename T> struct matrix{ function<T(T, T)> f, g; vector<vector<T>> mat; T unit; matrix(vector<vector<T>> v, T UNIT, function<T(T, T)> add_func, function<T(T, T)> multi_func):f(add_func), g(multi_func), unit(UNIT){ mat = v; } matrix<T> t(){ vector<vector<T>> ret(mat[0].size(), vector<T>(mat.size())); re(i, mat[0].size()) re(j, mat.size()) ret[i][j] = mat[j][i]; return matrix<T>(ret, f, g); } matrix<T> operator * (matrix<T> B){ vector<vector<T>> ret(mat.size(), vector<T>(B.mat[0].size(), unit)); if(mat[0].size()!=B.mat.size()){ std::cout << "matrix operator " << "*" << " error" << '\n'; return matrix<T>(ret, unit, f, g); } re(i, mat.size()){ re(j, B.mat[0].size()){ re(k, mat[0].size()){ ret[i][j] = f(ret[i][j], g(mat[i][k], B.mat[k][j])); } } } return matrix<T>(ret, unit, f, g); } matrix<T> operator * (ll num){ vector<vector<T>> ret = mat; re(i, mat.size()) re(j, mat[0].size()) ret[i][j] *= num; return matrix<T>(ret, unit, f, g); } matrix<T> operator + (matrix<T> B){ vector<vector<T>> ret = mat; if(mat.size()!=B.mat.size()||mat[0].size()!=B.mat[0].size()){ std::cout << "matrix operator " << "+" << " error" << '\n'; return matrix<T>(ret, unit, f, g); } re(i, mat.size()) re(j, mat[0].size()) ret[i][j] = f(mat[i][j], B.mat[i][j]); return matrix<T>(ret, unit, f, g); } matrix<T> operator ^ (ll num){ matrix<T> ret(vector<vector<T>> (0, vector<T>(0)), unit, f, g); if(mat.size()!=mat[0].size()){ std::cout << "matrix operator " << "^" << " error" << '\n'; return ret; } matrix<T> tmp(mat, unit, f, g); bool flag = false; while(num>0){ if(num%2){ if(flag) ret = ret * tmp; else ret.mat = tmp.mat, flag = true; } num/=2, tmp = tmp * tmp; } return ret; } vector<T> & operator [](int n){ return mat[n]; } }; ll ad(ll a, ll b){return (a+b)%P;} ll ml(ll a, ll b){return (a*b)%P;} int main(int argc, char const *argv[]) { ll n, w, k;std::cin >> n >> w >> k; vll a(n);re(i, n) std::cin >> a[i]; ll num = w; vll dp(num+1, 0); dp[0] = 1; for(int i=0;i<num;i++){ for(int j=0;j<n;j++){ if(i+a[j]>num) continue; dp[i+a[j]] = (dp[i+a[j]] + dp[i])%P; } } ll ONE = dp[num];//w進むパターン num = 2 * w; dp = vll(num+1, 0); dp[0] = 1; for(int i=0;i<num;i++){ for(int j=0;j<n;j++){ if(i+a[j]>num) continue; dp[i+a[j]] = (dp[i+a[j]] + dp[i])%P; } } ll TWO = (dp[num] - (ONE*ONE)%P + P)%P;//2*w進むパターン= dp[num] - ONE*ONE matrix<ll> A({{1},{0}}, 0, ad, ml); matrix<ll> B({{ONE, TWO}, {1, 0}}, 0, ad, ml); A = (B^k)*A; std::cout << A[0][0] << '\n'; return 0; }