結果

問題 No.502 階乗を計算するだけ
ユーザー NyaanNyaanNyaanNyaan
提出日時 2020-08-12 09:59:00
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 10,825 bytes
コンパイル時間 3,206 ms
コンパイル使用メモリ 304,704 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-09 18:04:42
合計ジャッジ時間 12,026 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 2 ms
6,820 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,816 KB
testcase_11 AC 2 ms
6,820 KB
testcase_12 AC 2 ms
6,820 KB
testcase_13 AC 2 ms
6,816 KB
testcase_14 AC 2 ms
6,820 KB
testcase_15 AC 2 ms
6,820 KB
testcase_16 AC 2 ms
6,816 KB
testcase_17 AC 2 ms
6,816 KB
testcase_18 AC 2 ms
6,820 KB
testcase_19 AC 2 ms
6,816 KB
testcase_20 AC 2 ms
6,820 KB
testcase_21 AC 2 ms
6,816 KB
testcase_22 AC 4 ms
6,816 KB
testcase_23 AC 2 ms
6,816 KB
testcase_24 AC 3 ms
6,820 KB
testcase_25 AC 2 ms
6,816 KB
testcase_26 AC 3 ms
6,816 KB
testcase_27 AC 2 ms
6,816 KB
testcase_28 AC 3 ms
6,816 KB
testcase_29 AC 3 ms
6,816 KB
testcase_30 AC 3 ms
6,816 KB
testcase_31 AC 2 ms
6,820 KB
testcase_32 AC 718 ms
6,816 KB
testcase_33 TLE -
testcase_34 AC 529 ms
6,816 KB
testcase_35 AC 262 ms
6,816 KB
testcase_36 AC 864 ms
6,816 KB
testcase_37 AC 655 ms
6,816 KB
testcase_38 TLE -
testcase_39 AC 902 ms
6,816 KB
testcase_40 AC 117 ms
6,816 KB
testcase_41 TLE -
testcase_42 AC 2 ms
6,816 KB
testcase_43 AC 2 ms
6,816 KB
testcase_44 AC 2 ms
6,820 KB
testcase_45 AC 2 ms
6,820 KB
testcase_46 AC 2 ms
6,816 KB
testcase_47 AC 2 ms
6,820 KB
testcase_48 AC 2 ms
6,820 KB
testcase_49 AC 2 ms
6,820 KB
testcase_50 AC 2 ms
6,820 KB
testcase_51 AC 2 ms
6,820 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:174:1: warning: 'always_inline' function might not be inlinable [-Wattributes]
main.cpp:166:1: warning: 'always_inline' function might not be inlinable [-Wattributes]
main.cpp:158:1: warning: 'always_inline' function might not be inlinable [-Wattributes]
main.cpp:147:1: warning: 'always_inline' function might not be inlinable [-Wattributes]
main.cpp:142:1: warning: 'always_inline' function might not be inlinable [-Wattributes]
main.cpp:135:1: warning: 'always_inline' function might not be inlinable [-Wattributes]
main.cpp:128:1: warning: 'always_inline' function might not be inlinable [-Wattributes]
main.cpp:120:1: warning: 'always_inline' function might not be inlinable [-Wattributes]
main.cpp:109:1: warning: 'always_inline' function might not be inlinable [-Wattributes]
main.cpp:104:1: warning: 'always_inline' function might not be inlinable [-Wattributes]

ソースコード

diff #

#include <immintrin.h>

//
#include <bits/stdc++.h>

using namespace std;

using namespace std;

template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(r * mod == 1, "invalid, r * mod != 1");
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  
  constexpr mint inverse() const { return pow(mod - 2); }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }
  
  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};
using namespace std;

__attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i
my128_mullo_epu32(const __m128i &a, const __m128i &b) {
  return _mm_mullo_epi32(a, b);
}

__attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i
my128_mulhi_epu32(const __m128i &a, const __m128i &b) {
  __m128i a13 = _mm_shuffle_epi32(a, 0xF5);
  __m128i b13 = _mm_shuffle_epi32(b, 0xF5);
  __m128i prod02 = _mm_mul_epu32(a, b);
  __m128i prod13 = _mm_mul_epu32(a13, b13);
  __m128i prod = _mm_unpackhi_epi64(_mm_unpacklo_epi32(prod02, prod13),
                                    _mm_unpackhi_epi32(prod02, prod13));
  return prod;
}

__attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i
montgomery_mul_128(const __m128i &a, const __m128i &b, const __m128i &r,
                   const __m128i &m1) {
  return _mm_sub_epi32(
      _mm_add_epi32(my128_mulhi_epu32(a, b), m1),
      my128_mulhi_epu32(my128_mullo_epu32(my128_mullo_epu32(a, b), r), m1));
}

__attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i
montgomery_add_128(const __m128i &a, const __m128i &b, const __m128i &m2,
                   const __m128i &m0) {
  __m128i ret = _mm_sub_epi32(_mm_add_epi32(a, b), m2);
  return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret);
}

__attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i
montgomery_sub_128(const __m128i &a, const __m128i &b, const __m128i &m2,
                   const __m128i &m0) {
  __m128i ret = _mm_sub_epi32(a, b);
  return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret);
}

__attribute__((target("avx2"))) __attribute__((always_inline)) __m256i
my256_mullo_epu32(const __m256i &a, const __m256i &b) {
  return _mm256_mullo_epi32(a, b);
}

__attribute__((target("avx2"))) __attribute__((always_inline)) __m256i
my256_mulhi_epu32(const __m256i &a, const __m256i &b) {
  __m256i a13 = _mm256_shuffle_epi32(a, 0xF5);
  __m256i b13 = _mm256_shuffle_epi32(b, 0xF5);
  __m256i prod02 = _mm256_mul_epu32(a, b);
  __m256i prod13 = _mm256_mul_epu32(a13, b13);
  __m256i prod = _mm256_unpackhi_epi64(_mm256_unpacklo_epi32(prod02, prod13),
                                       _mm256_unpackhi_epi32(prod02, prod13));
  return prod;
}

__attribute__((target("avx2"))) __attribute__((always_inline)) __m256i
montgomery_mul_256(const __m256i &a, const __m256i &b, const __m256i &r,
                   const __m256i &m1) {
  return _mm256_sub_epi32(
      _mm256_add_epi32(my256_mulhi_epu32(a, b), m1),
      my256_mulhi_epu32(my256_mullo_epu32(my256_mullo_epu32(a, b), r), m1));
}

__attribute__((target("avx2"))) __attribute__((always_inline)) __m256i
montgomery_add_256(const __m256i &a, const __m256i &b, const __m256i &m2,
                   const __m256i &m0) {
  __m256i ret = _mm256_sub_epi32(_mm256_add_epi32(a, b), m2);
  return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2),
                          ret);
}

__attribute__((target("avx2"))) __attribute__((always_inline)) __m256i
montgomery_sub_256(const __m256i &a, const __m256i &b, const __m256i &m2,
                   const __m256i &m0) {
  __m256i ret = _mm256_sub_epi32(a, b);
  return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2),
                          ret);
}

constexpr int MOD = 1000000007;

template <typename mint>
int naive_optimized(int MAX) {
  mint eight = 8;
  mint a[8] = {1, 1, 1, 1, 1, 1, 1, 1};
  mint b[8] = {1, 2, 3, 4, 5, 6, 7, 8};
  for (int i = 1; i <= (MAX / 8); i++) {
    a[0] *= b[0];
    b[0] += eight;
    a[1] *= b[1];
    b[1] += eight;
    a[2] *= b[2];
    b[2] += eight;
    a[3] *= b[3];
    b[3] += eight;
    a[4] *= b[4];
    b[4] += eight;
    a[5] *= b[5];
    b[5] += eight;
    a[6] *= b[6];
    b[6] += eight;
    a[7] *= b[7];
    b[7] += eight;
  }
  mint ret = 1;
  for (int i = 0; i < 8; i++) ret *= a[i];
  return ret.get();
}

int r[32] __attribute__((aligned(64)));
uint32_t res2[32] __attribute__((aligned(64)));
__attribute__((target("avx2"))) int optimized_with_simd_2(int MAX) {
  using mint = LazyMontgomeryModInt<1000000007>;
  using u64 = uint64_t;
  for (int i = 0; i < 32; i++) r[i] = mint::reduce(u64(i + 1) * mint::n2);
  __m256i A0 = _mm256_set1_epi32(r[0]);
  __m256i A1 = _mm256_set1_epi32(r[0]);
  __m256i A2 = _mm256_set1_epi32(r[0]);
  __m256i A3 = _mm256_set1_epi32(r[0]);
  __m256i B0 = _mm256_loadu_si256((__m256i *)(r + 0));
  __m256i B1 = _mm256_loadu_si256((__m256i *)(r + 8));
  __m256i B2 = _mm256_loadu_si256((__m256i *)(r + 16));
  __m256i B3 = _mm256_loadu_si256((__m256i *)(r + 24));
  const __m256i EI = _mm256_set1_epi32(mint::get_mod() * 2 - r[31]);
  const __m256i R = _mm256_set1_epi32(mint::r);
  const __m256i M0 = _mm256_set1_epi32(0);
  const __m256i M1 = _mm256_set1_epi32(mint::get_mod());
  const __m256i M2 = _mm256_set1_epi32(mint::get_mod() * 2);
  for (int i = 0; i < MAX / 32; ++i) {
    A0 = montgomery_mul_256(A0, B0, R, M1);
    A1 = montgomery_mul_256(A1, B1, R, M1);
    A2 = montgomery_mul_256(A2, B2, R, M1);
    A3 = montgomery_mul_256(A3, B3, R, M1);
    B0 = montgomery_sub_256(B0, EI, M2, M0);
    B1 = montgomery_sub_256(B1, EI, M2, M0);
    B2 = montgomery_sub_256(B2, EI, M2, M0);
    B3 = montgomery_sub_256(B3, EI, M2, M0);
  }
  _mm256_storeu_si256((__m256i *)(res2 + 0), A0);
  _mm256_storeu_si256((__m256i *)(res2 + 8), A1);
  _mm256_storeu_si256((__m256i *)(res2 + 16), A2);
  _mm256_storeu_si256((__m256i *)(res2 + 24), A3);
  mint ret = 1;
  for (int i = 0; i < 32; i++) ret *= *(reinterpret_cast<mint *>(res2 + i));
  return ret.get();
}

using namespace std;

namespace fastio {
static constexpr int SZ = 1 << 17;
char ibuf[SZ], obuf[SZ];
int pil = 0, pir = 0, por = 0;

struct Pre {
  char num[40000];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i * 4 + j] = n % 10 + '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
}
inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

inline void rd(char& c) { c = ibuf[pil++]; }
template <typename T>
inline void rd(T& x) {
  if (pil + 32 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if (c == '-') {
    minus = 1;
    c = ibuf[pil++];
  }
  x = 0;
  while (c >= '0') {
    x = x * 10 + (c & 15);
    c = ibuf[pil++];
  }
  if (minus) x = -x;
}
inline void rd() {}
template <typename Head, typename... Tail>
inline void rd(Head& head, Tail&... tail) {
  rd(head);
  rd(tail...);
}

inline void wt(char c) { obuf[por++] = c; }
template <typename T>
inline void wt(T x) {
  if (por > SZ - 32) flush();
  if (!x) {
    obuf[por++] = '0';
    return;
  }
  if (x < 0) {
    obuf[por++] = '-';
    x = -x;
  }
  int i = 12;
  char buf[16];
  while (x >= 10000) {
    memcpy(buf + i, pre.num + (x % 10000) * 4, 4);
    x /= 10000;
    i -= 4;
  }
  int d = x < 100 ? (x < 10 ? 1 : 2) : (x < 1000 ? 3 : 4);
  memcpy(obuf + por, pre.num + x * 4 + 4 - d, d);
  por += d;
  memcpy(obuf + por, buf + i + 4, 12 - i);
  por += 12 - i;
}

inline void wt() {}
template <typename Head, typename... Tail>
inline void wt(Head head, Tail... tail) {
  wt(head);
  wt(tail...);
}
template<typename T>
inline void wtn(T x){
  wt(x, '\n');
}

struct Dummy {
  Dummy() { atexit(flush); }
} dummy;

}  // namespace fastio
using fastio::rd;
using fastio::wt;
using fastio::wtn;
using namespace std;

struct Timer {
  chrono::high_resolution_clock::time_point st;

  Timer() { reset(); }

  void reset() { st = chrono::high_resolution_clock::now(); }

  chrono::milliseconds::rep elapsed() {
    auto ed = chrono::high_resolution_clock::now();
    return chrono::duration_cast<chrono::milliseconds>(ed - st).count();
  }
};

int main() {
  using mint = LazyMontgomeryModInt<MOD>;
  long long N;
  rd(N);
  if(N >= MOD) {
    wtn('0');
    return 0;
  }
  if(N < 32){
    mint ans = 1;
    for(int i = 1; i <= N; i++) ans *= i;
    wtn(ans.get());
    return 0;
  }
  mint ans = naive_optimized<mint>(N / 8 * 8);

  for (int i = N / 8 * 8 + 1; i <= N; i++) ans *= i;
  wtn(ans.get());
}
0