結果
問題 | No.1170 Never Want to Walk |
ユーザー | Thistle |
提出日時 | 2020-08-14 22:19:31 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,060 bytes |
コンパイル時間 | 2,109 ms |
コンパイル使用メモリ | 138,924 KB |
実行使用メモリ | 45,696 KB |
最終ジャッジ日時 | 2024-10-10 15:40:14 |
合計ジャッジ時間 | 13,787 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 16 ms
34,944 KB |
testcase_01 | AC | 17 ms
34,816 KB |
testcase_02 | AC | 17 ms
34,816 KB |
testcase_03 | AC | 18 ms
34,816 KB |
testcase_04 | AC | 17 ms
34,816 KB |
testcase_05 | AC | 18 ms
34,816 KB |
testcase_06 | AC | 17 ms
34,944 KB |
testcase_07 | AC | 17 ms
34,816 KB |
testcase_08 | AC | 16 ms
34,816 KB |
testcase_09 | AC | 17 ms
34,944 KB |
testcase_10 | AC | 17 ms
34,944 KB |
testcase_11 | AC | 18 ms
34,688 KB |
testcase_12 | AC | 18 ms
34,824 KB |
testcase_13 | AC | 19 ms
34,944 KB |
testcase_14 | AC | 19 ms
34,944 KB |
testcase_15 | AC | 19 ms
34,816 KB |
testcase_16 | AC | 19 ms
34,944 KB |
testcase_17 | AC | 18 ms
34,944 KB |
testcase_18 | AC | 19 ms
34,944 KB |
testcase_19 | AC | 19 ms
34,944 KB |
testcase_20 | AC | 20 ms
35,072 KB |
testcase_21 | AC | 18 ms
34,944 KB |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | AC | 343 ms
45,312 KB |
testcase_28 | AC | 335 ms
45,124 KB |
testcase_29 | AC | 348 ms
45,508 KB |
testcase_30 | AC | 351 ms
45,312 KB |
testcase_31 | AC | 339 ms
45,184 KB |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
ソースコード
#pragma GCC target ("avx") #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define _USE_MATH_DEFINES #include<iostream> #include<string> #include<queue> #include<cmath> #include<map> #include<set> #include<list> #include<iomanip> #include<vector> #include<random> #include<functional> #include<algorithm> #include<stack> #include<cstdio> #include<cstring> #include<bitset> #include<unordered_set> #include<unordered_map> #include<climits> #include<fstream> #include<complex> #include<time.h> #include<cassert> #include<functional> #include<numeric> #include<tuple> using namespace std; using ll = long long; using ld = long double; #define int long long #define all(a) (a).begin(),(a).end() #define fs first #define sc second #define xx first #define yy second.first #define zz second.second #define H pair<int, int> #define P pair<int, pair<int, int>> #define Q(i,j,k) mkp(i,mkp(j,k)) #define rng(i,s,n) for(int i = (s) ; i < (n) ; i++) #define rep(i,n) rng(i, 0, (n)) #define mkp make_pair #define vec vector #define vi vec<int> #define pb emplace_back #define siz(a) (int)(a).size() #define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end()) #define getidx(b,i) (lower_bound(all(b),(i))-(b).begin()) #define ssp(i,n) (i==(int)(n)-1?"\n":" ") #define ctoi(c) (int)(c-'0') #define itoc(c) (char)(c+'0') #define cyes printf("Yes\n") #define cno printf("No\n") #define cdf(n) int quetimes_=(n);rep(qq123_,quetimes_) #define gcj printf("Case #%lld: ",qq123_+1) #define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read() #define found(a,x) (a.find(x)!=a.end()) //#define endl "\n" constexpr int mod = (ll)1e9 + 7; constexpr int Mod = 998244353; constexpr ld EPS = 1e-10; constexpr ll inf = (ll)3 * 1e18; constexpr int Inf = (ll)15 * 1e8; constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 }; template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } ll read() { ll u, k = scanf("%lld", &u); return u; } string reads() { string s; cin >> s; return s; } H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; } bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; } bool ina(int t, int l, int r) { return l <= t && t < r; } ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; } ll popcount(ll x) { int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++; return sum; } template<typename T> class csum { vec<T> v; public: csum(vec<T>& a) :v(a) { build(); } csum() {} void init(vec<T>& a) { v = a; build(); } void build() { for (int i = 1; i < v.size(); i++) v[i] += v[i - 1]; } T a(int l, int r) { if (r < l) return 0; return v[r] - (l == 0 ? 0 : v[l - 1]); }//[l,r] T b(int l, int r) { return a(l, r - 1); }//[l,r) T a(pair<int, int>t) { return a(t.first, t.second); } T b(pair<int, int>t) { return b(t.first, t.second); } }; class mint { public:ll v; mint(ll v = 0) { s(v % mod + mod); } constexpr static int mod = (ll)1e9 + 7; constexpr static int fn_ = (ll)2e6 + 5; static mint fact[fn_], comp[fn_]; mint pow(int x) const { mint b(v), c(1); while (x) { if (x & 1) c *= b; b *= b; x >>= 1; } return c; } inline mint& s(int vv) { v = vv < mod ? vv : vv - mod; return *this; } inline mint inv()const { return pow(mod - 2); } inline mint operator-()const { return mint() - *this; } inline mint& operator+=(const mint b) { return s(v + b.v); } inline mint& operator-=(const mint b) { return s(v + mod - b.v); } inline mint& operator*=(const mint b) { v = v * b.v % mod; return *this; } inline mint& operator/=(const mint b) { v = v * b.inv().v % mod; return *this; } inline mint operator+(const mint b) const { return mint(v) += b; } inline mint operator-(const mint b) const { return mint(v) -= b; } inline mint operator*(const mint b) const { return mint(v) *= b; } inline mint operator/(const mint b) const { return mint(v) /= b; } friend ostream& operator<<(ostream& os, const mint& m) { return os << m.v; } friend istream& operator>>(istream& is, mint& m) { int x; is >> x; m = mint(x); return is; } bool operator<(const mint& r)const { return v < r.v; } bool operator>(const mint& r)const { return v > r.v; } bool operator<=(const mint& r)const { return v <= r.v; } bool operator>=(const mint& r)const { return v >= r.v; } bool operator==(const mint& r)const { return v == r.v; } bool operator!=(const mint& r)const { return v != r.v; } explicit operator bool()const { return v; } explicit operator int()const { return v; } mint comb(mint k) { if (k > * this) return mint(); if (!fact[0]) combinit(); if (v >= fn_) { if (k > * this - k) k = *this - k; mint tmp(1); for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i); return tmp * comp[k.v]; } return fact[v] * comp[k.v] * comp[v - k.v]; }//nCk mint perm(mint k) { if (k > * this) return mint(); if (!fact[0]) combinit(); if (v >= fn_) { mint tmp(1); for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i); return tmp; } return fact[v] * comp[v - k.v]; }//nPk static void combinit() { fact[0] = 1; for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * mint(i); comp[fn_ - 1] = fact[fn_ - 1].inv(); for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * mint(i + 1); } }; mint mint::fact[fn_], mint::comp[fn_]; //-------------------------------------------------------------- class unionfind { public: int size = 0; int pa[500000]; void init(int n) { size = n; for (int i = 0; i <= size; i++) pa[i] = -1; } int find(int x) { if (pa[x] < 0) return x; return pa[x] = find(pa[x]); } bool unite(int x, int y) { x = find(x); y = find(y); if (x == y) return false; if (pa[x] > pa[y]) swap(x, y); pa[x] += pa[y]; pa[y] = x; return true; } bool same(int x, int y) { return find(x) == find(y); } bool isroot(int x) { return x == find(x); } int sz(int x) { return -pa[find(x)]; } H operator[](int x) { x = find(x); return H{ x,-pa[x] }; } }; //--------------------------------------------------------------------- unionfind uf; signed main() { int n, a, b; cin >> n >> a >> b; int sq = sqrt(n); vi c(n), d(2 * n), e(2 * n, 0); uf.init(2 * n); rep(i, n) { c[i] = read(); d[i] = i / sq; } rep(i, n) { int l = lower_bound(all(c), c[i] + a) - c.begin(); int r = upper_bound(all(c), c[i] + b) - c.begin(); int tmp = l; for (; tmp < r; tmp++) { if (tmp % sq == 0) break; uf.unite(i, tmp); } while (tmp < r) { if (tmp + sq < r) { uf.unite(n + d[tmp], i); tmp += sq; } else break; } for (; tmp < r; tmp++) { uf.unite(i, tmp); } } for (int i = 0; i < n; i += sq) { if (uf[n + d[i]].sc != 1) { rng(j,i,i+sq) uf.unite(n + d[i], j); } } rep(i, 2*n) { if (uf[i].fs == i) e[i] = uf[i].sc; } rng(i,n, 2 * n) { e[uf[i].fs]--; } rep(i, n) cout << uf[i].sc << endl; }