結果
| 問題 |
No.1170 Never Want to Walk
|
| コンテスト | |
| ユーザー |
nok0
|
| 提出日時 | 2020-08-14 22:36:00 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 550 ms / 2,000 ms |
| コード長 | 5,680 bytes |
| コンパイル時間 | 21,772 ms |
| コンパイル使用メモリ | 301,024 KB |
| 最終ジャッジ日時 | 2025-01-13 00:17:02 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 37 |
ソースコード
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
using namespace std;
#pragma region Macros
#define ll long long
#define ld long double
#define FOR(i,l,r) for(ll i=(l);i<(r);++i)
#define REP(i,n) FOR(i,0,n)
#define REPS(i,n) FOR(i,1,n+1)
#define RFOR(i,l,r) for(ll i=(l);i>=(r);--i)
#define RREP(i,n) RFOR(i,n-1,0)
#define RREPS(i,n) RFOR(i,n,1)
#define pb push_back
#define eb emplace_back
#define SZ(x) ((ll)(x).size())
#define all(x) (x).begin(),(x).end()
#define rall(x) (x).rbegin(),(x).rend()
template<class T = ll> using V = vector<T>;
template<class T = ll> using VV = V<V<T>>;
using P = pair<ll, ll>;
using Graph = VV<>;
#define ios\
ios::sync_with_stdio(false);\
cin.tie(nullptr);
#define VEC(type, name, size)\
V<type> name(size);\
IN(name)
#define VVEC(type, name, h, w)\
VV<type> name(h, V<type>(w));\
IN(name)
#define INT(...)\
int __VA_ARGS__;\
IN(__VA_ARGS__)
#define LL(...)\
ll __VA_ARGS__;\
IN(__VA_ARGS__)
#define STR(...)\
string __VA_ARGS__;\
IN(__VA_ARGS__)
#define CHAR(...)\
char __VA_ARGS__;\
IN(__VA_ARGS__)
#define DOUBLE(...)\
DOUBLE __VA_ARGS__;\
IN(__VA_ARGS__)
#define LD(...)\
LD __VA_ARGS__;\
IN(__VA_ARGS__)
template <class T> void scan(T a) { cin >> a; }
void scan(int &a) { cin >> a; }
void scan(long long &a) { cin >> a; }
void scan(char &a) { cin >> a; }
void scan(double &a) { cin >> a; }
void scan(long double &a) { cin >> a; }
void scan(char a[]) { scanf("%s", a); }
void scan(string &a) { cin >> a; }
template <class T> void scan(V<T> &);
template <class T, class L> void scan(pair<T, L> &);
template <class T> void scan(V<T> &a) { for(auto &i : a) scan(i); }
template <class T, class L> void scan(pair<T, L> &p){ scan(p.first); scan(p.second); }
template <class T> void scan(T &a) { cin >> a; }
void IN() {}
template <class Head, class... Tail> void IN(Head &head, Tail &... tail) { scan(head); IN(tail...); }
template <class T> inline void print(T x){ cout << x << '\n';}
template <class T> V<T> press(V<T> &x){
V<T> res = x;
sort(all(res));
res.erase(unique(all(res)), res.end());
REP(i, SZ(x)){
x[i] = lower_bound(all(res), x[i]) - res.begin();
}
return res;
}
template<class T> inline bool chmin(T& a, T b) {if (a > b) {a = b; return true; }return false; }
template<class T> inline bool chmax(T& a, T b) {if (a < b) {a = b; return true; }return false; }
inline void Yes(bool b = true) {cout << (b ? "Yes" : "No") << '\n';}
inline void YES(bool b = true) {cout << (b ? "YES" : "NO") << '\n';}
inline void err(bool b = true) {if(b) {cout << -1 << '\n'; exit(0);}}
template<class T> inline void fin(bool b = true, T e = 0) {if(b) {cout << e << '\n'; exit(0);}}
template<class T> T Roundup_div(T x, T y) {return (x+(y-1))/y;}
template <typename T> T pow(T a, long long n, T e = 1) {T ret = e; while (n) {if (n & 1) ret *= a; a *= a; n >>= 1; } return ret; }
const ll INF = 1e9;
#pragma endregion
struct UnionFind {
public:
vector<int> par;
UnionFind(int n){
par=vector<int>(n,-1);
}
int root(int x){
if(par[x]<0)return x;
return par[x]=root(par[x]);
}
bool issame(int x,int y){
return root(x)==root(y);
}
bool merge(int x,int y){
x=root(x);
y=root(y);
if(x==y)return false;
if(par[x]>par[y])swap(x,y);
par[x]+=par[y];
par[y]=x;
return true;
}
int size(int x){
return -par[root(x)];
}
};
struct LazySegmentTree {
private:
int n;
vector<int> node, lazy;
vector<bool> lazyFlag;
public:
LazySegmentTree(vector<int> v) {
int sz = (int)v.size();
n = 1; while(n < sz) n *= 2;
node.resize(2*n-1);
lazy.resize(2*n-1, INF);
lazyFlag.resize(2*n-1, false);
for(int i=0; i<sz; i++) node[i+n-1] = v[i];
for(int i=n-2; i>=0; i--) node[i] = min(node[i*2+1], node[i*2+2]);
}
void lazyEvaluate(int k, int l, int r) {
if(lazyFlag[k]) {
node[k] = lazy[k];
if(r - l > 1) {
lazy[k*2+1] = lazy[k*2+2] = lazy[k];
lazyFlag[k*2+1] = lazyFlag[k*2+2] = true;
}
lazyFlag[k] = false;
}
}
void update(int a, int b, int x, int k=0, int l=0, int r=-1) {
if(r < 0) r = n;
lazyEvaluate(k, l, r);
if(b <= l || r <= a) return;
if(a <= l && r <= b) {
lazy[k] = x;
lazyFlag[k] = true;
lazyEvaluate(k, l, r);
}
else {
update(a, b, x, 2*k+1, l, (l+r)/2);
update(a, b, x, 2*k+2, (l+r)/2, r);
node[k] = min(node[2*k+1], node[2*k+2]);
}
}
int find(int a, int b, int k=0, int l=0, int r=-1) {
if(r < 0) r = n;
lazyEvaluate(k, l, r);
if(b <= l || r <= a) return INF;
if(a <= l && r <= b) return node[k];
int vl = find(a, b, 2*k+1, l, (l+r)/2);
int vr = find(a, b, 2*k+2, (l+r)/2, r);
return min(vl, vr);
}
};
int main(){
ios;
INT(n, a, b);
VEC(ll, x, n);
UnionFind uf(n);
V<int> z(n, INF);
LazySegmentTree ST(z);
REP(i, n){
ll l = lower_bound(all(x), x[i] + a) - x.begin();
ll r = upper_bound(all(x), x[i] + b) - x.begin();
if(l == n or l == r) continue;
uf.merge(i, l);
if(ST.find(l, r) == INF) ST.update(l, r, i);
else ST.update(l, r, ST.find(l, r));
}
REP(i, n - 1) if(ST.find(i, i + 1) == ST.find(i + 1, i + 2) and ST.find(i, i + 1) != INF) uf.merge(i, i + 1);
REP(i, n) print(uf.size(i));
}
nok0