結果
問題 | No.1170 Never Want to Walk |
ユーザー | nok0 |
提出日時 | 2020-08-14 22:36:00 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 550 ms / 2,000 ms |
コード長 | 5,680 bytes |
コンパイル時間 | 21,772 ms |
コンパイル使用メモリ | 301,024 KB |
最終ジャッジ日時 | 2025-01-13 00:17:02 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 37 |
ソースコード
#pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include<bits/stdc++.h> using namespace std; #pragma region Macros #define ll long long #define ld long double #define FOR(i,l,r) for(ll i=(l);i<(r);++i) #define REP(i,n) FOR(i,0,n) #define REPS(i,n) FOR(i,1,n+1) #define RFOR(i,l,r) for(ll i=(l);i>=(r);--i) #define RREP(i,n) RFOR(i,n-1,0) #define RREPS(i,n) RFOR(i,n,1) #define pb push_back #define eb emplace_back #define SZ(x) ((ll)(x).size()) #define all(x) (x).begin(),(x).end() #define rall(x) (x).rbegin(),(x).rend() template<class T = ll> using V = vector<T>; template<class T = ll> using VV = V<V<T>>; using P = pair<ll, ll>; using Graph = VV<>; #define ios\ ios::sync_with_stdio(false);\ cin.tie(nullptr); #define VEC(type, name, size)\ V<type> name(size);\ IN(name) #define VVEC(type, name, h, w)\ VV<type> name(h, V<type>(w));\ IN(name) #define INT(...)\ int __VA_ARGS__;\ IN(__VA_ARGS__) #define LL(...)\ ll __VA_ARGS__;\ IN(__VA_ARGS__) #define STR(...)\ string __VA_ARGS__;\ IN(__VA_ARGS__) #define CHAR(...)\ char __VA_ARGS__;\ IN(__VA_ARGS__) #define DOUBLE(...)\ DOUBLE __VA_ARGS__;\ IN(__VA_ARGS__) #define LD(...)\ LD __VA_ARGS__;\ IN(__VA_ARGS__) template <class T> void scan(T a) { cin >> a; } void scan(int &a) { cin >> a; } void scan(long long &a) { cin >> a; } void scan(char &a) { cin >> a; } void scan(double &a) { cin >> a; } void scan(long double &a) { cin >> a; } void scan(char a[]) { scanf("%s", a); } void scan(string &a) { cin >> a; } template <class T> void scan(V<T> &); template <class T, class L> void scan(pair<T, L> &); template <class T> void scan(V<T> &a) { for(auto &i : a) scan(i); } template <class T, class L> void scan(pair<T, L> &p){ scan(p.first); scan(p.second); } template <class T> void scan(T &a) { cin >> a; } void IN() {} template <class Head, class... Tail> void IN(Head &head, Tail &... tail) { scan(head); IN(tail...); } template <class T> inline void print(T x){ cout << x << '\n';} template <class T> V<T> press(V<T> &x){ V<T> res = x; sort(all(res)); res.erase(unique(all(res)), res.end()); REP(i, SZ(x)){ x[i] = lower_bound(all(res), x[i]) - res.begin(); } return res; } template<class T> inline bool chmin(T& a, T b) {if (a > b) {a = b; return true; }return false; } template<class T> inline bool chmax(T& a, T b) {if (a < b) {a = b; return true; }return false; } inline void Yes(bool b = true) {cout << (b ? "Yes" : "No") << '\n';} inline void YES(bool b = true) {cout << (b ? "YES" : "NO") << '\n';} inline void err(bool b = true) {if(b) {cout << -1 << '\n'; exit(0);}} template<class T> inline void fin(bool b = true, T e = 0) {if(b) {cout << e << '\n'; exit(0);}} template<class T> T Roundup_div(T x, T y) {return (x+(y-1))/y;} template <typename T> T pow(T a, long long n, T e = 1) {T ret = e; while (n) {if (n & 1) ret *= a; a *= a; n >>= 1; } return ret; } const ll INF = 1e9; #pragma endregion struct UnionFind { public: vector<int> par; UnionFind(int n){ par=vector<int>(n,-1); } int root(int x){ if(par[x]<0)return x; return par[x]=root(par[x]); } bool issame(int x,int y){ return root(x)==root(y); } bool merge(int x,int y){ x=root(x); y=root(y); if(x==y)return false; if(par[x]>par[y])swap(x,y); par[x]+=par[y]; par[y]=x; return true; } int size(int x){ return -par[root(x)]; } }; struct LazySegmentTree { private: int n; vector<int> node, lazy; vector<bool> lazyFlag; public: LazySegmentTree(vector<int> v) { int sz = (int)v.size(); n = 1; while(n < sz) n *= 2; node.resize(2*n-1); lazy.resize(2*n-1, INF); lazyFlag.resize(2*n-1, false); for(int i=0; i<sz; i++) node[i+n-1] = v[i]; for(int i=n-2; i>=0; i--) node[i] = min(node[i*2+1], node[i*2+2]); } void lazyEvaluate(int k, int l, int r) { if(lazyFlag[k]) { node[k] = lazy[k]; if(r - l > 1) { lazy[k*2+1] = lazy[k*2+2] = lazy[k]; lazyFlag[k*2+1] = lazyFlag[k*2+2] = true; } lazyFlag[k] = false; } } void update(int a, int b, int x, int k=0, int l=0, int r=-1) { if(r < 0) r = n; lazyEvaluate(k, l, r); if(b <= l || r <= a) return; if(a <= l && r <= b) { lazy[k] = x; lazyFlag[k] = true; lazyEvaluate(k, l, r); } else { update(a, b, x, 2*k+1, l, (l+r)/2); update(a, b, x, 2*k+2, (l+r)/2, r); node[k] = min(node[2*k+1], node[2*k+2]); } } int find(int a, int b, int k=0, int l=0, int r=-1) { if(r < 0) r = n; lazyEvaluate(k, l, r); if(b <= l || r <= a) return INF; if(a <= l && r <= b) return node[k]; int vl = find(a, b, 2*k+1, l, (l+r)/2); int vr = find(a, b, 2*k+2, (l+r)/2, r); return min(vl, vr); } }; int main(){ ios; INT(n, a, b); VEC(ll, x, n); UnionFind uf(n); V<int> z(n, INF); LazySegmentTree ST(z); REP(i, n){ ll l = lower_bound(all(x), x[i] + a) - x.begin(); ll r = upper_bound(all(x), x[i] + b) - x.begin(); if(l == n or l == r) continue; uf.merge(i, l); if(ST.find(l, r) == INF) ST.update(l, r, i); else ST.update(l, r, ST.find(l, r)); } REP(i, n - 1) if(ST.find(i, i + 1) == ST.find(i + 1, i + 2) and ST.find(i, i + 1) != INF) uf.merge(i, i + 1); REP(i, n) print(uf.size(i)); }